Computational Algorithms

Let U ={ug, ..., Uy } be a knot vector and
suppose we are interested in the basis
functions of degree p.

In addition, suppose u is fixed, and
u [ [ui, Uizq). We will develop algorithms to
compute the following:

1) the knot span index |




3) N®) b)), ..., N® ) fork=0, ..., p.
For k > p, the derivatives are zero.

4) a single basis function, N; ,(u), where
O<j<sm-p-1.

5) the derivatives of a single basis function,
N®(u), where, 0<j<m-p-1,and
k=0, ..0p.




From P2.2 and the assumption that

u [ [u;, Uiyq), It follows that we may focus our
attention on Ny ,(U), ..., Nj n(u) and their
derivatives; all of the other functions are
identically zero, and it would be wasteful to
actually compute them.

The first step is to determine the knot space Iin
which u lies. We will use a binary search.
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Note, a subtle problem in the evaluation of the
basis functions can result in the case where

U = Uny. It Is best to handle this case by setting
the span indexton (=m-p - 1). Hence, Iin this
case,

u U (Um-p-1, Um-pl

See algorithm A2.1
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Now Consider the second algorithm. You
should note that direct implementation of the
Cox-deBoor formulation leads to many
redundant computations.

For example, consider the degree 2 basis
functions in general terms:

Note that:
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_2
N;_,,(u) = y _ul N; 5 q(u)
i —Ui_2
(a)
Uu. — U
+ 1+ 1 Ni_ll(u)
U174, _q ’
U—u; 1
N;_1,(u) = ~ N;_1,(u)
’ Uipy17U; 1 | (b)
Uu . — U
+ 1+ 2 Nil(u)
Uipor—U; 7
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u—ui
N, () = N, 1 @)

U, o~ U;

Uiz~ u (©)
+ Ni+1,1(u)

Ui y37U;j 41

e the first term of equ. (a) and the last term of
equ. (c) should not be computed, since

Ni2,2(U) = Nj4q 1(u) =0
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 the expression,

N; 4 4(u)

U174, 4

which appears in the second term of equ. (a),
also appears in the first term first term of
equ. (b). A similar statement holds for the
second term of equ. (b) and the first term of

equ. (c).
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Thus, we Introduce the notation,

left[j] = Ui yq_j

right [j] = U; U

and rewrite equations (a)-(c) as follows:
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left 3]
right [0] +left[3] Ni—2,1(u)

right [1]
right[1] +left[2] Ni -1,1 (v) (a)

N;_5(u) =

left[2]

right [1] +left[2] Ni—l,l(u)
right [ 2]

right [2] + left[1]

Ni—l,Z(u) =

N; 1 (u) (D)




left [1]
right [2] +left[1]
right [ 3]
right [3] +left[O] Niv1,1()

N, ,(u) =

N; 4 (w)
(c)

Based on these observations, the following
algorithm computes all the non-vanishing
basis functions and stores them in the array

N[ O], ..., N[Pp]




See algorithm A2.2

Note: algorithm A2.2 avoids zero-divides!
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B-spline Basis Function
Derivative Algorithm

The algorithm will be based on the second
general formulation for the k-th derivative of
Ny p(u), fori-p<r<iand 0 <k <p. The basic
iIngredients are:




e the Inverted triangle of non-zero basis
functions computed as in Algorithm A2.2,

e.g.,

Nll N0,3
N N

No % Ny

7 ’\ / ’

N3’\ N2,2

N N
Ny s N3,/

N, . s N;s
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e differences of knots, also computed in A2.2
(the sums:right[r+1] +left[]-r]).

» differences of the a ;. Note that the & ;
depend on the a,_; j, but not the ag ;, for
s<k-1.
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Viewed in a 2D array, of dimension

(p+ 1) x (p + 1), the basis functions fit into the

upper triangle (including the diagonal), and the
knot differences fit into the lower triangle.
For example,

N o(u) i 1,1(U) N;j_2,2(U)
Ui+ - Uj Ni 1(u) N;j-1,2(U)
Uj+1 - Ujg Uiy - Uj Ni o(u)

MES525x NURBS Curve an d Surface Modeling Page 164




Example:

Letp=2,U={0,0,0,1, 2,3,4,4,5,5, 5}, and
u=2.5. Then u 0 [uy, Us), and the table
pecomes:

N4,0(2.5) =1 N3,1(2.5) =1/2 N2,2(2.5) = 1/8

Ug - Uy = 1 N4,1(2.5) =1/2 N3,2(2.5) = 6/8
Us - Ug =2 Ug-Us=2 | Nyo(2.5)=1/8




Next, compute N'J5(2.5) and N),(2.5).
With 1 = 4 the formula yields:

@10 - =2
Us—U, 2

@117 3 iu =1
I 5

42,0 uaiSL :%
5 4
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and,

_ —-1-=

o 1 1=@1 0 _ 2
21 — -
Ug—Ug 4—-3
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N(lj,z(u) = 2(a1’ 0N4,1(2'5)
ta, 1N5’1(2.5) )

N(2)4’2(u) = 2(a2, 0N4,0(2'5)
ta, 1N5,0(2'5) ta, 2N6,0(2'5) )




Now, a; 1, a» 1 and ay , all use knot differences
which are not in the table, but they are
multiplied by N5 1(2.5), N5 ¢(2.5) and Ng ¢(2.5)
respectively, which are also not in the table
(they are equal to zero). Thus the equations
reduce to:

N(lj,z(u) = 2a, 0N4,1(2'5)

1l
= NI

N, (u) = 2a, (N, o (2.5)




These values can be checked by verifying that
N4 o(u) = 0.5(u - 2)% on u 0 [2, 3)

Thus, Algorithm A2.3 is formulated based on
observations drawn from this example.

It computes the non-zero basis functions and
their derivatives, up to and including the n-th
derivative (n < p). Output is Iin the 2D array,
ders.ders[k][]] Isthe k-th derivative of
the function Nj_p+j ,, Wwhere 0 <j < p and

0 <k <£n. Two local arrays are used:
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e ndu[ p+1] [ p+1] : as in the above table

e al 2] [ pt1] : to store (in an alternating
fashion) the two most recently computed
rows a j and ay.q ;.

Note that the algorithm avoids divides by zero
and/or the use of terms not in the table,
ndu[ ][]
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