Swept Surfaces

Swept surfaces are generated by moving a section curve along a trajectory curve.

Denoting the trajectory curve as T(v) and the section curve as C(u), a general swept surface is given by:

$$\mathbf{S}(u,v) = \mathbf{T}(v) + \mathbf{M}(v)\mathbf{C}(u)$$

where M(v) is a 3 x 3 matrix incorporating rotation, and nonuniform scaling as a function of v.

This general formulation, however, can lead to unwanted behavior, e.g., self-intersection, degeneracies, and discontinuities

In practice, most swept surfaces are restricted to one of two types:

- 1) M(v) is the identity matrix, i.e., C(u) is simply translated by T(v).
- 2) M(v) is not the identity matrix.

Case 1 is referred to as a general translational sweep:

$$\mathbf{S}(u,v) = \mathbf{T}(v) + \mathbf{C}(u)$$

This swept surface is defined as follows, Let:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} \sum_{j=0}^{m} N_{j,\,q}\left(v
ight) w_{j}^{T} oldsymbol{T}_{j} \ & \sum_{j=0}^{m} N_{j,\,q}\left(v
ight) w_{j}^{T} \ & j=0 \end{aligned}$$
 $V = \{v_{0}, ..., v_{s}\}$

and,

$$C(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u) w_i^C Q_i}{\sum_{i=0}^{n} N_{i,p}(u) w_i^C}$$

$$U = \{u_0, ..., u_r\}$$

Then the swept surface is defined by,

$$S(u,v) = \frac{\sum_{i=0}^{m} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) w_{ij} \mathbf{P}_{ij}}{\sum_{i=0}^{m} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) w_{ij}}$$

on knot vectors U and V.

With control points:

$$P_{ij} = T_j + Q_i$$
 $i = 0, ..., n$ $j = 0, ..., m$

and weights:

$$w_{i,j} = w_i^C w_j^T$$
 $i = 0, ..., n$ $j = 0, ..., m$

See Figure 10.11

For case 2 things get more interesting...

Let {**O**, **X**, **Y**, **Z**} denote the global coordinate system.

Then introduce a local orthonormal coordinate system:

$$\{\boldsymbol{o}(v), \boldsymbol{x}(v), \boldsymbol{y}(v), \boldsymbol{z}(v)\}$$

which moves along T(v).

Define,

$$\boldsymbol{o}(v) = \boldsymbol{T}(v)$$
 $\boldsymbol{x}(v) = \frac{\boldsymbol{T}'(v)}{|\boldsymbol{T}'(v)|}$

We need one more independent vector to define the local moving coordinate system.

Suppose B(v) is defined so that it satisfies

$$\boldsymbol{B}(v) \cdot \boldsymbol{x}(v) = 0$$

Now, set

$$\boldsymbol{z}(v) = \frac{\boldsymbol{B}(v)}{|\boldsymbol{B}(v)|}$$

and,

$$\boldsymbol{y}(v) = \boldsymbol{z}(v) \times \boldsymbol{x}(v)$$

We will return to the question of choosing $\mathbf{B}(v)$ later.

Finally, to incorporate differential scaling, introduce a three-dimensional vector function,

$$\boldsymbol{s}(v) = (s_x(v), s_y(v), s_z(v))$$

Now, the more general form of the swept surface can be written as,

$$S(u,v) = T(v) + A(v)S(v)C(u)$$

where,

- S(v) is a 3 x 3 diagonal matrix of elements from s(v)
- A(v) is the general transformation matrix between global, {O, X, Y, Z}, and local, {o(v), x(v), y(v), z(v)} coordinate systems. (i.e., the rows of A(v) are x(v), y(v), z(v)).

If A(v) and S(v) can be precisely represented as rational B-spline functions, then so can S(u,v).

However, A(v) is generally not representable as a NURBS curve. So we have to approximate. There are several approaches...

here are two:

1) Use

$$S(u,v) = T(v) + A(v)S(v)C(u)$$

to evaluate an $n \times m$ grid of points lying on S(u,v), and then interpolate, or approximate

2) Transform and place C(u) at K + 1 instances, and use skinning to get S(u,v). Increasing K increases the accuracy. (See algorithms A10.1 and A10.2)

What about B(v)?

If the trajectory curve T(v) is twice differentiable, we can use the *Frenet* frame, i.e., define,

$$\boldsymbol{B}(v) = \frac{\boldsymbol{T'}(v) \times \boldsymbol{T''}(v)}{|\boldsymbol{T'}(v) \times \boldsymbol{T''}(v)|}$$

and,

$$\mathbf{y}(v) = \mathbf{N}(v) = \mathbf{B}(v) \times \mathbf{T}'(v)$$

T(v), N(v), and B(v) are mutually orthogonal for all v, and when normalized form a moving local coordinate system on T(v) called the Frenet frame.

B(v), so defined, can be used in algorithms A10.1 and A10.2. However, several problems can arise.

1) B(v) is not defined for linear segments or at inflection points, i.e., where

$$T'(v) \times T''(v) = 0$$

- 2) B(v) flips abruptly to the opposite direction at an inflection point.
- 3) For 3D trajectories, B(v) can rotate excessively around T(v) causing unwanted twisting of the swept surface.

Your text presents a method to control this twisting behavior while taking advantage of the Frenet frame.