Curve Constructio_n via Local
Interpolation

Given {Q,} , 2 = 0, ..., n, construct a curve
using local curve interpolation. A local curve
Interpolation scheme constructs n polynomial
or rational segments, C. (v),t = 0, ...,n -1,
such that Q; and Q;, 1 are the end points of

C. (u) . Neighboring segments are joined with
some prescribed level of continuity.
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Polynomial or rational Bezier curves are used
to construct the segments, then a NURBS
curve Is obtained by selecting a suitable knot
vector. The segments may meet with G* or C1

continuity.
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Obtaining the Bezier segments, C. (u),
requires the computation of the inner Bezier
control points. These control points lie on the
lines which are tangent to the curve at the Qy.

These tangent vectors, Ty, are required at
each Q. The tangent vectors may be input
with Qy, If not they must be calculated as part
of the interpolation algorithm. There are a
number of methods for obtaining T,.
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Local Parabolic Curve
Interpolation

Given {@Q,, T}, let L be a directed line
defined by (Qy, Ty), and Ry the intersection
point of L4 and L,.
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Assume for the moment that the intersection
exists and that

Y, ;>0 Y, <0

where
R, =Q, +Y, T, ,
R, =Q,+Y,T,

These restrictions will be removed later.
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The needed control points are

Q,.R.Q R, ...R .Q,

LetuO—Oandu =11 {a;},
1 = 1,...,n-1, Is a sequence of numbers

satisfymg u, ,<u;<u,,, thenthe control
points along with the knot vector

= {0,0,0,a,,ay, ... 8, 1,8, 1, 1,1,1)
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define a nonrational, G* continuous, quadratic
B-spline curve interpolating {@Q,} .

The choice of internal knots does not affect the
shape of the curve, only the parameterization. It is
possible to select knots such that the resulting
curve is C* continuous. As a result the control
points Qy, ..., Q,,.; and one occurrence of each of
the Interior knots can be removed.
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The C* continuous curve interpolating the
{Q,} Is then defined by the control points:

QO’Rl’RZ’ ""Rn—l’Rn’ Qn

and the knot vector:

[] u, u u u [
U — [01 01 O,_11_21---1 2_21 2_1, 11 11 1|:|
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where,

&
[
-

<
[
=

_ _ _ ‘Rk_Qk—l‘
uk = uk—1+ (uk_1+uk_2)‘Qk_1_Rk_1‘

where kR = 2,....n

Reparameterizing the curve to obtain C*
continuity may result in a non-uniform
parameterization.
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Now the earlier restrictions will be handled by
two special cases which arise when computing
Ry.

1.Ty.1 and T, are parallel, thus R, can not be
computed by intersection; this can indicate
collinear segments, an inflection point, or a
180° turn in the curve

MES525x NURBS Curve an d Surface Modeling Page 532




2.Ry can be computed, but Y, , and Y, do
not satisfy

Y, ;>0 Y, <0

this indicates either an inflection point or a
turn of more than 180°.

The collinear segments case applies if T _;
and Ty are both parallel to the chord Qy._,Qy.
This is handled by setting

R, = %(Qk—l-l-Qk)
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All other special cases are handled by creating
two parabolic segments between Q,_; and Qy,
Instead of one. Three points must be
computed

Qk+1
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It remains to determine reasonable choices for
Y,and Y,  ,.1f T, and T, are parallel (but
not to Qy.1Qy), then set

1
Vi = Vi1 = 5/@1-1Qp

This Is illustrated in the following example.
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Now consider the case when T,_; and T, are
not parallel. Intuitively, Y, and Y, ,, should
depend on the angles 6, , and 0, subtended
by the chord Q,_,Qy and the tangents T,_, and
Ty (0<06, ,,0,<90°).

For this case:

. Q.9

1
k Z(ucos@k + (1-a) cosB, _,)

and
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Q19

Y :1’
k- 4(acosB, _,+ (1-a)cosb,)

where a Is some constant between 0 and 1.
Based on experimental observation, we
choose a = 2/3.
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Qs

gC}

Qk—l
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The preceeding method can be modified to
produce rational quadratic curves. All weights
at the Q,  are set to 1; weights at the R, can be
freely chosen. For example, some applications
may require that the segments be more
circular rather than parabolic.
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Local Cubic Curve Interpolation

Cubics easily handle three-dimensional data
and inflection points without special treatment.

Let Py and P3 be two endpoints, and T and
T3 be the corresponding tangent directions
with unit length. It is possible to construct a
cubic Bezier curve, C (u), v U [0,1], with these
endpoints and tangent directions that satisfies:
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«=lcl=|cEq=lcw

As shown In the following figure.
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This implies:

_ 1 _
P, = Py+3aT, P,=P,—zaT

Now applying the deCasteljau Algorithm at
u = 1/2.




3
where, P,” = C (1/2)

It follows that:

c DL0 20
Como= 60P,” -
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Therefore,

2
6

P,+P,-P -Pg

[]
P+ P -

1

§O‘T3D Pyt 5 O‘ToD L
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which leads to
160° = a”|T,+ T}
~120 (P,—P) O(T,+T,)
+36/P;—P,|°

This equation has two real solutions for a, one
positive and one negative. Substituting the
positive solution into:
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_ 1 _
P, = Py+3aT, P,=P,—zaT

yields the desired P, and P».

Let {Q}, K=0, ..., n, be a set of three-
dimensional data points. If tangent vectors are
not given, compute them.
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Construct a cubic Bezier curve segment,
C, (u), between each pair, Qy, Qy+1. Denote
the Bezier control points by

=Q, P,, P,, P,3=Q,,,

We must determine suitable locations for Py 4
and Py , along Ty and Ty, 1. Itis possible to
obtain a C* continuous cubic and to achieve a
good approximation to a uniform
parameterization.
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True uniform parameterization means
constant speed over the entire parameter
range. We construct a curve with equal speed
at each Q, and at the midpoint of each Bezier
segment. Setz, = 0. Now fork=0, ..., n -1,
the @, , ; and the inner control points of

C, (u) are computed as follows:

1.Compute a to compute P, 1 and Py 5

2.5eta,,, =u,+3P, P,
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This algorithm yields n Bezier segments, each
having speed equal to 1 at their end- and
midpoints with respect to their parameter
ranges, [&,, 4, , 4]

Thus a C* continuous cubic B-spline curve

interpolating the Qy Is defined by the control
points

Qo Py 1Py o Py 1Py >
. P

n-—22 Pn—l, 1’ Pn—l, 2’ QO
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and the knots
] i, U, - U
U = [0,0,0,0, —=, —, -2, -2

[] u_u

U U ]
Lo nod1,1,10
un un D

The following figures show examples of cubic
curve interpolation.
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Curve Construction via Global
Fitting

A well known method is least squares.
Suppose Q,, k=0, ..., mare given. We want to
produce a p-th degree nonrational B-spline
curve with (n+1) control points (p < n <m)

(how to choose n?7?7?), satisfying the following
conditions.




1. QO = PO and Qm = Pn.

2. The curve passes close to Qy,
k=1, ..., m-1, In the least squares sense.

The steps are as follows:

1. Compute the data point parameter
assignments z,, k=0, ..., m using
accumulated chord length or the centripetal
method.
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2. For the knot vector, choose interior knots so
that each knot span contains roughly the same
number of 79

3. Set up the constraint equation in partitioned
form:
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where subscript U denotes unconstrained, and
C, constrained, I.e.,

Q,=1Qy...Q, ;17
Q. = [Q,Q,]"
P,=[P,..,P,_ T
P, = [P,P T
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l

Ny isthe(m —1) x (n—1)

matrix of basisfunctionsN; , ()

=1 ...,n=-1ad k£ =1,.. m-1

N, isthe (m—-1) x2
matrix of basisfunctionsN;  (z,)
i1 =0nad k=1 ... m-1

I I1sthe 2x 2 identity matrix

MEb525x
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4. Now since Q¢ = Pg, It follows that
NPy = Q;—N-Q, which implies,

(NGNy) Py = Nij (Qy-NQc)
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5. Solve this equation. Itisan (n-1) x (n -1)
system of linear equations in the unknowns,

Pc, with (invertible) coefficient matrix NLN;,

and right-hand side N7, (Q,,-N,Q)
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Example: Letm =3 and n=p = 2. Then,

N1,2(l_‘1)_
Ny, (T,)

Ny o (@) Ny (’7‘1)_
No o (Ty) Ny, (Ty)

PPPPPPP




and from the above formulation we have,

N, ,(z,)

[Nl,z(‘_‘l) N1,2(’7'2)J [N (@)
1,245

[] _ _ []
_ _ 0@y |No (@) Ny, (7)) ||Q0

N N -0 ’
[ 12 () 1,2(u2)J E[Qj [No,z(uz) Nz,z(uz)] [Q?]E

P, =
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which implies,

PU =
- [Nl,g(al) (Ql_No,g(al) Qo_Ng,z(nl) Q3)
N, () (Ry—Ng ,(4,) Qy—N, ,(4,) Q) 1/

[(Ny ,(a;))2+ (N, ,(a,))?

Convince yourself that it works by choosing
some examples points!
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Weighted and Constrained Least
Squares Curve Fitting

Let {Qi}, 1=0, ..., 1, be the points to be
approximated. In addition the first derivative D;
at any Q; can be specified. Let {Dj;},

]=0, ..., s, be the set of derivatives; -1<s<r,
where s = -1, means no derivatives are
specified. Any Q; or D;;) can be constrained.




The unconstralned items are denoteduby

QR 0),..Q" i (r,) and D“; (g), ..., D i(s,)-
The constralned tems are denoted by

QL(O) Qz(r) andDz(O) ,D L (s,) -

Note that s,;, S or r. equal to -1 means no data
corresponding to that index.

In addition note thatr =r, + r. + 1 and
S=5s,+s; t+1.
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A positive weight can also be assigned to each
nonconstrained item, w”; (o), ..., w"; () and
W i (0)s - W i(s)-

"hese weights allow additional influence over
the tightness of the approximation to each
data it%m relative to its neighbors.

wqi,w ; = 11s the default.
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Increasing the weight increases the tightness
of the approximation to that item, decreasing
the weight loosens the approximation to that

item.

Notice that these weights have nothing to do
with weights in the NURBS sense.
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Now letmy, =r,+s,+1and m,=r; +s; +1.

We want to approximate the unconstrained
data in the least squares sense and interpolate
the constrained data with a pth degree
nonrational curve, C(u), with n + 1 control
points.

Assume
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Now let S, k=0, ..., m, be the kth
unconstrained data item. Ty, k=0, ..., m,, be
the kth constrained data item. Finally, w,
k=0,...,m,, be the kth weight.

Define the following vectors/matrices

S = [S,] a vector of m +1 elements
T = [T,] a vector of m_ +1 elements
W=lw,) an (m, +1) x(m +1)

diagonal matrix
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P = [P,] the vector of n+1

unknown control points

N = [ND, ,(a,)]

where ND. (&,) Is the ith basis function or
L, D

its first derlvatlve evaluated at &, , which Is a

parameter value corresponding to an

unconstrained data item, this is a

(m, + 1) x (n + 1) matrix of scalars.
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M = [MD;  (a,)]

where MD. (@,) Is the ith basis function or
L, D

its first derlvatlve evaluated at z,, which is a

parameter value corresponding to an

constrained data item, this is a

(m. + 1) x (n + 1) matrix of scalars.
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Compute the data point parameter
assignments z,, k=0, ..., m using
accumulated chord length or the centripetal
method.

The knots u; can be found using

+1
d=—
n—p+1
1 = int (jd) = jd —1
Uy = (1-a)u, ,+an,

Jj=1..,n-p
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Determining the curve Is a constrained
minimization problem, involving n + 1
unknowns and m. + 1 constraints.

The standard method of solution iIs to use
Lagrange multipliers. This yields a partitioned
matrix of the form.

N'ws P
T M 0|lA
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There is a unigue solution if N"WN and
M(NTWN)MT are both invertible.

1 1
- =NTwNE NTws - eNTwNE MTA

A = BuENTwNE M E B ENTwNE N ws - T2

See algorithm A9.6.
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Unconstrained fit with all weights equal to one;
note curve does not pass through endpoints.
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Unconstrained fit.

MES525x NURBS Curve and Surface Modeling Page 578




Constrained fit; point constraints marked with
sguares, tangent constraints by arrows.
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Constrained fit.
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Two new tangent constraints.
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Two new weights.
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Least Squares Surface
Approximation

Although it is possible to set up and solve a
general least squares surface fitting problem,
linear or nonlinear, and with or without weights
and constraints, the task is more complex than
for curves.

MES525x NURBS Curve an d Surface Modeling Page 583




The text presents a surface approximation
scheme which builds upon the least squares
curve scheme. The approach is simple but
adequate for most applications.

See algorithm A9.7.
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