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Interpolation, Fitting and Cross-
Sectional Design

Two commonly used curve and surface design
techniques are interpolation and fitting. Given
a set of constraints, typically points and
sometimes derivative or tangent (i.e., unit
length) vectors then,
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• interpolation means construct a curve (or
surface) which passes through the points,
and assumes the specified derivative
constraints, i.e., the constraints are satisfied
precisely.

• fitting means construct a curve (or surface)
which approximates (by some measure) the
constraints to some tolerance.
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Interpolation and fitting methods can be either
global or local:

• Global. Generally, a global system of
equations is set up and solved. A change in
any one constraint may change the entire
curve (or surface) shape (although the
magnitude of the constraint generally falls off
with increasing distance from the affected
constraint).
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• Local. These algorithms are generally more
constructive (geometric) in nature,
constructing the curve (or surface)
segment-wise, using only local constraints
for each step. A change in (or addition of) a
constraint only changes the curve (or
surface) locally.
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Local methods are usually computationally
less expensive than global methods. They can
also deal with cusps and other local anomalies
better; however, achieving desired levels of
continuity at segment boundaries can be
difficult.

Another issue, when using NURBS, is whether
to use only nonrational curves (all weights set
to 1), or rational (and if rational, how to set the
weights?)
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Curve Construction via Global
Interpolation

Given a set of data points, Qk, k = 0, ..., n, we
seek a p-th degree nonrational B-spline curve
C(u), which satisfies the n + 1 constraints:

for some parameter values , k = 0, ..., n.

Qk C uk( ) Ni p, uk( ) Pi
i 0=

n

∑= =

uk
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Some remarks about this equation:

• This equation results in a (n + 1) × (n + 1)
system of linear equations.

• There are, of course, infinitely many curves
satisfying this equation; some may be “okay”
and some may not be.
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• We use a nonrational curve. Trying to use a
rational curve in a global interpolation is
difficult, as it leads to nonlinear constraints.

• This equation is independent of the number
of coordinates; it can interpolate 2D, 3D or
even 4D (homogeneous) data.
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There are actually four unknowns in the
equation: the degree p, the data point
parameter assignments , the knot vector U,

and the control points Pi. Clearly, p,  and U

must all be determined (chosen) before the
system of equation can be set up and solved
for the Pi; and their choice has a very definite
effect on the shape of the resulting curve.

uk
uk
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There are a number of (mostly heuristic)
methods for choosing the  and U; here are a

few:

1. Equally spaced  and equally spaced

knots uj. In particular,

uk

uk
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uk
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n
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=
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n p– 1+
---------------------- …, ,=
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n p–
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p + 1

p + 1



M E 5 2 5 x N U R B S  C u r v e  a n d  S u r f a c e  M o d e l i n g P a g e  4 8 9

This method is notoriously bad, especially if
the Qk are even a little bit unevenly spaced.
Furthermore, the system of equations may be
singular.

2. Compute the  according to accumulated

chord length, and the uj by averaging the .

Specifically: first compute,

uk
uk
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Then,

d Qk Qk 1––
k 1=

n

∑=

u0 0 un, 1= =

uk uk 1–
1
d
--- Qk Qk 1––+=

k 1 … n 1–, ,=,
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and,

This is probably the most widely used method,
and is generally adequate.

U 0 … 0 u1 … un p– 1 … 1, , , , , , , ,{ }=

where,

uj
1
p
--- ui

i j=

j p 1–+

∑ for j 1 … n p–, ,=,=
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3. The centripetal method for computing the
. Instead of assigning parameters according

to accumulated chord length, use a fractional
power, e.g., let,

then,

uk

a Qk Qk 1––
k 1=

n

∑=
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The knots uj are then computed via parameter
averaging, as before. The centripetal method
has an advantage over the chord length
method when the curve turns sharply.

u0 0 un, 1= =

uk uk 1–
1
a
--- Qk Qk 1––+=

k 1 … n 1–, ,=,
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Using methods 2 or 3 above yields a system of
linear equations in n + 1 unknowns. The
coefficient matrix is totally positive and banded
with bandwidth less than p. Hence it can be
solved safely by Gaussian elimination without
pivoting.

Examples
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In addition to points, first derivative or tangent
vectors may be given at each point.

Assume derivatives, Dk, are given. Then we
have 2(n + 1) constraints and will have that
many control points to solve for. The systems
of equations are:
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Qk C uk( ) Ni p, uk( ) Pi
i 0=

2n 1+

∑= =

Dk C′ uk( )=

p Ni p 1–, uk( )
Pi 1+ Pi–

ui p 1+ + ui 1+–
---------------------------------------

i 0=

2n

∑=

(A)

(B)
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The  can be chosen as above, or we can

compute a parametrization even closer to the
true arc length by making use of the Dk (e.g.,
fit a parabolic arc between two neighboring
points and approximate its arc length).

The knot vector is obtained as follows. We
need 2(n + 1) + p + 1 knots. We consider the
cases p = 2 and p = 3 (most frequent cases). If
p = 2, then choose,

uk
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if p = 3, then,

U 0 0 0
u1

2
------ u1

u1 u2+

2
------------------ u2 … 1 1 1, , , , , , , , , ,{=

…
un 1– 1+

2
----------------------- 1 1 1, , , , , }
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If we merge equations (A) and (B) in an
alternating fashion, the resulting
2(n + 1) × 2(n + 1) system is banded and can
be solved without pivoting.

U 0 0 0 0
u1

2
------

2u1 u2+

3
----------------------

u1 2u2+

3
----------------------, , , , , ,{=

…
un 2– 2un 1–+

3
-------------------------------------

un 1– 1+

2
----------------------- 1 1 1 1, , , , , , , }
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If only the tangent vectors, Tk, are given
instead of Dk, then the magnitudes will have to
be computed (to obtain the Dk from the Tk). A
method to do this follows:

• Compute the  (e.g., by approximating the
arc length of parabolic arcs between the Qk).

• Let s be the total computed arc length.

uk
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• Then set Dk = sTk for all k (i.e., this assumes
a uniform parametrization of the curve).

• If the resulting curve is not satisfactory, s may
be interactively and iteratively adjusted
(increasing s produces a “fuller” curve).
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Next consider rational interpolation. This is
important, for example, in skinning. If we are
given weighted control points , k = 0, ..., n,

we apply the above formulation in 4D (since it
is independent of the number of coordinates.

Of course, using the chordal arc length
approximation for parameter assignment
implies that we are computing the curve based
on its arc length of its unprojected (4D)
counterpart, but in practice this seems to work
quite well.

Qk
w
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Finally, suppose both  and Dk are given (if

Tk are given, the Dk must be derived from
them, as above). Then to use the derivative
constraints above, we must estimate the ;

i.e., the 4D derivatives. So, from the

we need to find the,

Qk
w

Dk
w

Dk ẋk ẏk żk, ,( )=

Dk
w wkxk( ) ′ wkyk( ) ′ wkzk( ) ′ w′k, , ,( )=
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Since,

we need to compute  only. We interpolate a

1D spline w(u) through the data points wk,
k = 0, ..., n, so that . From this
we have,

Then proceed as above.

wkxk( ) ′ ẇkxk wkẋk+=

ẇk

w uk( ) wk=

ẇk ẇ u( ) u uk=
=
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Surface Construction via Global
Interpolation

Given a set of (n + 1) x (m + 1) data points
Qk,l, k = 0, ..., n and l = 0, ..., m, that are to be
interpolated to construct a (p, q) th degree
nonrational B-spline surface.
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The first step is to compute reasonable value
for  and the knot vectors U and V.

Qk l, S uk vl,( )=

Ni p, uk( ) Nj q, vl( ) Pi j,
j 0=

m

∑
i 0=

n

∑=

uk vl,( )
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Using chord length or centripetal method
presented in global curve interpolation section

compute  for each l, and then

average these results for , that is

The same procedure can be used to find
.

uo
l … un

l, ,
l 0 … m, ,=

uk
1

m 1+
-------------- uk

l k
l 0=

m

∑ 0 … n, ,= =

vl
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See algorithm A9.3.

Once the are computed, the knot

vectors U and V can be obtained using
techniques from global curve interpolation.

Now to compute the control points.

uk vl,( )
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This equation,

clearly represents a (n + 1) x (m + 1) system of
linear equations in the unknowns .
However, since is a tensor product
surface the unknowns can be obtained by a
sequence of curve interpolations.

Qk l, S uk vl,( )=

Ni p, uk( ) Nj q, vl( ) Pi j,
j 0=

m

∑
i 0=

n

∑=

Pi j,
S u v,( )
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For fixed l,

where

Qk l, Ni p, uk( ) Ri l,
i 0=

n

∑= (a)

Ri l, Nj q, vl( ) Pi j,
j 0=

m

∑= (b)



M E 5 2 5 x N U R B S  C u r v e  a n d  S u r f a c e  M o d e l i n g P a g e  5 1 3

Notice that (a) is just curve interpolation
through points . The

are the control points of the isoparametric
curve on at fixed .

Now fixing i and letting l vary, (b) is curve
interpolation through points

with  as the computed control

points.

Qk l, k, 0 … n, ,= Ri l,

S u v,( ) v vl=

Ri 0, … Ri m,, ,
Pi 0, … Pi m,, ,
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Thus, the algorithm to obtain all  is:

1.using U and , do m + 1 curve
interpolations through  (for

); this yields .

2.using V and , do n + 1 curve
interpolations through  (for

); this yields

See algorithm A9.4

Pi j,

uk
Q0 l, … Qn l,, ,

l 0 … m, ,= Ri l,

vl
Ri 0, … Ri m,, ,

i 0 … n, ,= Pi j,
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Data points:
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Interpolating the u-directional data points:
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Interpolating the v-direction through control
points of u-directional interpolants:
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Surface interpolant showing control points:
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The algorithm is symmetric; the same surface
is obtained by:

1.doing n + 1 curve interpolations through
the  to obtain the  (control
points of isoparametric curves );

2.then doing m + 1 curve interpolations
through the  to obtain the .

Q0 l, … Qn l,, , Rk j,
S uk v,( )

R0 j, … Rn j,, , Pi j,
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Derivative constraints can also be included in
global surface interpolation. The derivative
formulas can be used to add one additional
equation for each derivative constraint.

However, if the number of constraints is not
the same for each row or column it becomes
difficult to solve for the unknown surface
control points.
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With clever use of curve knot insertion and
surface knot removal, partial derivative
constraints at individual data points can be
handled.

Local surface interpolation methods (yet to
come) are well suited to handling derivative
constraints.


