Conics and Circles

There are many important applications of
conics and circles in design. Since the rational
Bezier is a special case of a NURBS curve,
guadric curves and surfaces can be
represented exactly with the same
representation used for general sculptured
curves and surfaces. This is one of the
fundamental advantages of the NURBS
representation.
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'0 motivate this discussion, we will consider
ne reparameterization of a circular arc, and
nen consider the construction of general

conics in NURBS form.

Recall the rational Bezier of the form:
P".->(1,0,1), (1, 1,1),(0, 2, 2)
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P,=(0,1)

W, =2
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Evaluating the point at u = 0.5 yields (0.6, 0.8)
which Is obviously more than half the total arc
length. This is to be expected from considering
the derivatives (velocity vectors) at the
endpoints, I.e., the curve Is said to have
non-uniform parameterization.

Suppose we want to reparameterize the curve

In order to get a more uniform and symmetric
parameterization.
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A rational curve C(u) Iis reparameterized with a
function of the form:

_av+b
cv+d

This changes neither the shape nor the degree
of the curve. Clearly, we may assume d = 1,
and we want to satisfy the conditions: u = 0 at
v=0andu=1atv=1.

MES525x NURBS Curve an d Surface Modeling Page 393




These conditions imply that: b = 0, and
c = a- 1. Hence the reparameterization
function we seek has the form:

av

“ - (a—1)v+1

Now we must determine the coefficient a
which yields a reparameterization that satisfies
the following conditions:
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o0 _ /2 /20

R0~ Uor 2t
and

C(0)] = |C (1)

Using the chain rule, C (v) = C (u)(dj—"; and

the fact that,




C(0) = 2— (P

C(l) =2—(P

iImplies that,
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d_u
dv

_ v

2 "

v=0 v=1

Differentiating the reparameterization
relationship above yields,

du a
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Combining these and solving for a yields,

202—-1 =0
2
= +—
or, a = 5
. . |
Choosing a = 5 would cause a zero in the

denominator.
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Hence, we choose a = . and obtain the

/2
2
reparameterization function,

(J2-2)v +2

u

Substituting this into the original curve
definition C¥ () = (1-u? 2u,1+u?)
yields, for example,
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x (V)

o PR
(J2=-2)v +2]
Ty PN
(J2=-2)v +2]

(1-./2)v2+ (J2-2)v +1

(2-J2)v2+ (J2-2)v+1




w(v) = (2—J2)v2+ (J2-2)v +1

algebraic

= (1-v) 2w0+20 (1—v)w1+vzw2

Bezier
It follows that:
w(0) =wy=1
w(l) =w, =1
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and thatatv = 1/2,
(2-/2) 7+ (f2-2)5+1 =

2
2

and thus, w, =
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It is easy to verify that the Bezier
representation given by

PW. > (1, 0, 1), E{Z gz f% (0, 1, 1) satisfies

the desired parametric constraints, I.e.,

cOL0 _ /2 /20
B0~ U5l

and

C(0)] = |C (1)




Some Important Things to Note

 Reparameterization of a rational curve with a

function of the form: u = 2% + b changes
cv+d

neither the shape nor the degree.
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* A reparameterization changes the weights.
But arbitrarily changing the weights may
change the shape of the curve. Hence there
must exist a relationship among the weights,
such that the shape is not changed as long
as the relationship is not disrupted. This
relationship depends solely on the degree of
the curve. For quadratic Bezier curves, It Is:

Wwol 5

2
Wi

= constant
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This constant is called the conic shape factor.
Changing the weights, while maintaining this
equality, is equivalent to a reparameterization
of the curve.

e A reparameterization (or equivalent change
of weights) affects the magnitude (not
direction) of the first derivative (velocity)
vector
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Conic Arcs

The guadratic rational Bezier curve,
C(u) =
- (1-u)2wPy+2u (1-u)w, P, +uw,P,

(1—u) 2w0+ 2u(l-u)w, + u2w2

IS a conic arc.
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The denominator can be written,
w(u) = (1-u)?wy+2u(l-uw)w, +uw,

= ((wy—-2w,tw,)u?+2(w,—wy) u +w,)
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Hyperbolo

Paraboto

Etlipse
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The roots of this equation are:

- wy—w,tJ1-k A
u1,2 - 2 + ( )
Wo=—eW T Wy
wal, _
where & = >— IS the conic shape factor. If
w
1

w; = 1 for all I, then the rational Bezier is a
parabola.
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Let wg = w, = 1 (called the normal
parameterization), assume w4 # 1. Then the
above equation implies:

o if K> 1, then equation (A) has no real
solutions. There are no points at infinity on
the curve; hence it is an ellipse.

eif k=1 (wq, =-1), equation (A) has one real
solution; there is one point on the curve at
infinity; thus the curve Is a parabola.
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o if k < 1, equation (A) has two roots, the curve
has two points at infinity, it is a hyperbola.

EXxpressing the above conditions in terms of
w1, we have:

ew;°<1(-1<wy<1) 0 ellipse.
ew;2=1(w; =1or-1) O parabola.

. Wl >1(wq;>1o0rw; <-1) 1 hyperbola.
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Notice that w, can be 0 or negative. w; =0
yields a straight line between Py and P,, and
w; < 0 yields the complementary arc
(traversed In the reverse order). Notice also,
that the convex hull property does not hold if

W1<O.

Varying w, yields a family of conic arcs having
Py and P, as endpoints and end tangents
parallel to PoP, and PP-.
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A convenient way to select a conic from the
family Is top specify a third point on the conic,
which Is attained at some parameter value,
say u = 1/2. This point is called the shoulder
point of the conic: S = C(1/2). Substitution of
u = 1/2 into the equation of the rational
guadratic Bezier yields:

1 Wy

= +
S 1+w1M 1+w1P

1

where M is the midpoint of the chord PgP-.
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Due to our choice of wy = w, = 1, it follows that
the tangent to the conic at S is parallel to PoP»,
l.e., the conic attains its maximum distance

from PoP, at S = C(1/2).

Let s be a new parameter that gives a linear
Interpolation between M and P,. Then for
some value of s we have,

S=(1-s)M+sP,
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Combining these two relationships yields,

Wy
S = and w, =

S
1+w1

1-s

Thus, the parameter s may be used as a
design tool. The designer can move his
shoulder point (which determines the “fullness”
of the curve) linearly from M to P4 to yield:
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es=0: a line segment
e0<s<1/2:anellipse
es=1/2: aparabola

¢ 1/2 <s<1:ahyperbola
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Circles

A circular arc whose sweep angle is less than
180° can also be represented by a rational
guadratic Bezier curve.
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For symmetry reasons, the triangle PyP 1P
must be isosceles (with|PgP4| = |P1P>]).

Since a circle Is a special case of an ellipse,
we expect that 0 < w, < 1. Using the linear
relationship defined by s, we know that:

_ s _ MS|
(1-5) ‘SP

w4 1‘
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Let 6 = aP{PgM. It can be shown that the chord
PoS bisects 8. Using the trig identity:

100 _ sin (9)
PU™ (1+ cos (0))
relationship, and the notation from the figure,
we get,

tan . the above

e [ tan %g%

' fCsin (8) - Ctan




e

LUl:

f(1+ cos (9))
e _e _
— fE _QE_Q =77 cos (9)
]L‘

The most convenient method for obtaining
circular arcs equal to or greater than 180° is to

piece together smaller arcs using multiple
knots. Consider the following examples.
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U={000.25.25.5.5.75.7511 1}
W={1 1/2° 1 1/2° 1 1/2° 1 1/2- 1)
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U={0001/31/32/32/3111}
W={1.51.51.51}
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There is a trade-off in deciding how many arcs
to use for the full circle. The more arcs used,
the better the parameterization and the tighter
the convex hull.
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Construction of Conics

This section will develop algorithms for
construncting conics (using quadratic
representations). Parabolic and hyberbolic
arcs can always be represented with one
rational Bezier curve and positive weights.
However, as with circles, multi-segment
curves may be required to obtain arbitrary
elliptical arcs using positive weights.
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There are many ways to specify a conic arc:

e Define parameters such as radii, axes and
focal distance, as well as start and end
points.

« Specify start and end points with tangent
directions at those two points, plus one
additional point on the arc.
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If the conic arc Is specify using data given in
the form of item 1, then the start and end
points (Pg & P»), the tangents at these points
(To & T») and a point on the conic arc (P) can
be derived.

P1 can be obtained by intersecting lines
[Po, To] and [Pz, T2] Settlng WO:W2:1, the
only missing data Is wj.
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The additional point, P, determines the conic
and w,. Substituting P = C(u) into:

C(u) =
_ (1-u)?w Py +2u (1-u)w, P, +u?w,P,

(1-u)?wy+2u (l-u)w, +u’w,

Yields three equations in the two knowns u
and wj.
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These equations can be solved, but the
geometric arguments yield a more efficient
algorithm.

The desired conic can be considered as a
perspective view of the parabola determine by
Py, P1 and P, with P4 being the center of the
perspective. Any pair of conic segments lying
In this triangle can be mapped onto one
another.
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This includes the line [Py, P,] onto the desired
conic.
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Hence the points P and Q are needed for this
transformation. Now the line [Py, P5] Is
obtained by setting w; = 0.

(1—u) 2PO + u2P2

L(u) = 5

(1—u)2+u

L (u) Is a convex conbination of Py and P,, thus
the ratio of distances |Py Q| to |Q P»| IS
u? : (1-u)?. This yields:
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u = 2 a = POQ
1+a QP,
The weight, wy, can now be found using u
and P.
(1-u)®(P-Py) O(P,-P) +u’(P-P,) O(P,-P)
w, =

See algorithm A7

2u (1-u)|P, —P|°

2.
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Algorithm A7.2 will work for parabolic and
hyperbolic arcs and for elliptical arcs for which
wy > 0 and whose sweep angle Is not too
large. Splitting an ellipse into segments Is not
as easy as was the case for circles. The major
and minor axes and radii are not available
from the input data.

The shoulder point, S, is a convenient place to
split the ellipitical arc.
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R

P{}:Qo
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R, Q, =Ry

Q,
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The rational deCasteljau algorithm is used to

split the arc PoP{P,. There are two steps in

the splitting process.

Step 1. Split at u = 0.5. Using the deCasteljau

algorithm to obtain

Q"

w _ 1

R, 5

I
NI
N
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and recalling that wy = w, = 1, it follows that

Q _Pyrw, Py
1 1+w,
w. P, +P

R = J1r 1770
1 1+w,

and
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Where wy and w, are the weights at Q1 and

R1. A second application of the deCasteljau
algorithm yields.

RO:QZ S =

NI -

(@, +R))

and
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Step 2. Reparameterize so that the end
weights are 1 for both of the two new
segments. After splitting the weights for the
first segment are:

w, =1
1
w, = §(1+w1)
1
w, = s(1+w,)
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The desired weights are:

w, =1 W, q W,y = 1
Using the conic shape factor:
Wolls _ WolWy2
L 2 2
q ql

yields:
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Due to symmetry,
We ~

See algorithm A7.3.

1+w

I
=
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