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Curve and Surface Basics

• Implicit and parametric forms

• Power basis form

• Bezier curves

• Rational Bezier Curves

• Tensor Product Surfaces
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Implicit and Parametric Forms

Implicit Form:

• implicit functional relationship between
coordinates of points lying on a curve.
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Implicit Form:

• example, circle of radius 1:

f x y,( ) x2 y2 1–+ 0= =

x

y

r=1
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Parametric Form:

• each coordinate of points on the curve is
represented separately as an explicit function
of an independent variable, u:

• the interval [a, b] is arbitrary. It is usually
normalized to [0,1]

C u( ) x u( ) y u( ),( ) a u b≤ ≤,=
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The first quadrant of the unit circle can be
defined by the parametric functions:

• Note, setting , gives an
alternative parametric form:

x u( ) u( )cos=

y u( ) u( )sin=
0 u π 2⁄≤ ≤,

t u 2⁄( )tan=

x t( ) 1 t2–
1 t2+
--------------=

y t( ) 2t
1 t2+
--------------=

0 t 1≤ ≤,
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• Thus the parametric representation of a
curve is NOT unique.

We can think of a parametric curve C(u) as the
path traced out by a particle as a function of
time:

• u is the time variable,

• [a, b] is the time interval.
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Then the first and second derivatives of C(u)
are the velocity and acceleration of the
particle, respectively, thus:

C′ u( ) x′ u( ) y′ u( ),( )= =

u( )sin– u( )cos,( )

C′ t( ) x′ t( ) y′ t( ),( )= =

4t–

1 t2+( ) 2
----------------------- 2 1 t2–( )

1 t2+( ) 2
-----------------------, 

 
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Note that the magnitude of the velocity vector
C’(u) is a constant:

This is referred to as uniform parametrization.

C′ u( ) u( )sin2 u( )cos2+=
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Substituting t = 0 and t = 1 into C’(t) yields:

• C’(0) = (0,2) and

• C’(1) = (-1,0),

i.e., the particle’s start speed is twice its end
speed.

---> non-uniform parameterization
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x

y

C’(u=0)

C’(t=0)

C’(u=1) = C’(t=1)
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An implicit surface is defined by an equation of
the form f(x,y,z) = 0.

For example, a sphere of radius 1, centered at
the origin:

f x y z, ,( ) x2 y2 z2 1–+ + 0= =
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A parametric representation (not unique) of the
same sphere is given by

S(u,v) = (x(u,v), y(u,v), z(u,v)), where:

Note that two parameters are required to
define a surface.

x u v,( ) u( ) v( )cossin=

y u v,( ) u( ) v( )sinsin=

z u v,( ) u( )cos=

0 u π;≤ ≤
0 v 2π≤ ≤
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Denote the partial derivatives of S(u,v) by:

Su(u,v) = (xu(u,v), yu(u,v), zu(u,v))

Sv(u,v) = (xv(u,v), yv(u,v), zv(u,v))

At any surface point at which the cross product
Su × Sv does not vanish, the unit normal vector
is given by:

N
Su Sv×
Su Sv×
-----------------------=
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• The existence of the normal, and the
corresponding tangent plane, is a geometric
property of the surface, independent of
parameterization.

• Different parameterizations will give different
partial derivatives, but the above equation
will always yield N.
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Implicit and parametric forms have their
advantages and disadvantages; both have
been applied to useful modeling methods.

Summary

• By adding a z-coordinate, the parametric
method is easily extended to represent
arbitrary curves in 3D space. The implicit
form can only represent curves in the
coordinate planes (i.e., the xy-, xz-, or yz-
planes).



M E 5 2 5 x N U R B S  C u r v e  a n d  S u r f a c e  M o d e l i n g P a g e  1 6

• Boundedness is built into the parametric form
through the bounds on the parametric
interval. It is cumbersome to represent
bounded curve segments (or surface
patches) with the implicit form.

• Parametric curves possess a natural
direction of traversal, implicit curves do not.
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• Parametric forms can provide a natural
method for designing and representing
shape in a computer. Techniques exist which
relate the coefficients of parametric functions
to geometrically intuitive control “handles”

• Parametric form sometimes produces
anomalies which are unrelated to the true
geometry (e.g., vanishing normals)
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• The complexity of many geometric
operations depends greatly on the method of
representation. Two classic examples are:

1) Compute a point on a curve or surface
(difficult in implicit form)

2) Given a point, determine if it is on the
curve or surface (difficult in the parametric
form)
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Power Basis Form of a Curve

The choice of basis for a parametric curve is
arbitrary, but the choice involves trade-offs.
Ideally, we want a class of functions which:

• are capable of representing precisely all
curves needed

• are easily, efficiently and accurately
processed in a computer



M E 5 2 5 x N U R B S  C u r v e  a n d  S u r f a c e  M o d e l i n g P a g e  2 0

• numerical processing is insensitive to floating
point operations

• functions should require little memory for
storage

Polynomials satisfy the last two criteria - there
are curve and surface types which cannot be
represented using polynomials.
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Two common methods of expressing
polynomial functions are:

• Power basis (algebraic form)

• Bezier (a “geometric” form)

Although they are mathematically equivalent,
the Bezier is better suited to representing and
manipulating shape on a computer.
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An n-th degree power basis curve is given by:

The ai = (xi, yi, zi) are vectors, so:

C u( ) x u( ) y u( ) z u( ), ,( )=

aiu
i

i 0=

n

∑= , 0 u 1≤ ≤
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x u( ) xiu
i

i 0=

n

∑=

y u( ) yiu
i

i 0=

n

∑=

z u( ) ziu
i

i 0=

n

∑=
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Alternatively, the polynomial can be written in
matrix form:

C u( ) a0 a1 … an

1

u
…
un

ai( ) T ui( )= =
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Differentiation yields:

where, C(i)(u)|u=0 is the i-th derivative of C(u)
at u=0.

• The n + 1 functions, {ui}, are called the basis
(or blending) functions, and the {ai}, the
coefficients of the power basis
representation.

ai

C i( ) u( ) u 0=

i!
-----------------------------------=
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Given a parameter value ui, the point C(ui) on
a power basis curve is most efficiently
computed using Horner’s method:

for, • degree = 1: C(ui) = a1ui + a0

• degree = 2: C(ui) = (a2ui + a1)ui + a0

• :

• degree = n: C(ui) = ((... (anui + an-1)ui +
an-2)ui + ... + a0
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The general algorithm is:

Algorithm A1.1
Horner1(a, n, u, C)
{ /* Compute point on power

basis curve */
/* Input: a, n, u */
/* Output: C */

C = a[n];
for (i=n-1; i>=0; i--)

C = C*u + a[i];
}
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Bezier Curves

The power basis form has the following
disadvantaged with respect to interactive
geometric design:

• Coefficients {ai} convey little geometric
insight. In addition, a designer typically wants
to control both ends of the curve, not just the
start point
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• Numerically, it is a rather poor form; e.g.,
Horner’s method is prone to round-off error if
the coefficients vary in magnitude

The Bezier form overcomes these deficiencies
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An n-th degree Bezier curve is defined by:

The basis (blending) functions, {Bi,n(u)} are the
n-th degree Bernstein polynomials, given by:

The coefficients of this geometric form {Pi} are
called control points.

C u( ) Bi n, u( ) Pi
i 0=

n

∑ 0 u 1≤ ≤,=

Bi n, u( ) n!
i! n i–( ) !
------------------------ui 1 u–( ) n i–=
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Examples:

n = 1:

From the definition,

B0,1(u) = 1 - u, and B1,1(u) = u

The Bezier curve takes the form:

C(u) = (1 - u)P0 + uP1

i.e., a parametric line segment from P0 to P1
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n = 2:

From the definition,

C(u) = (1 - u)2P0 + 2u(1 - u)P1 + u2P2 ,

which is a parabolic arc from P0 to P2.

•

• •

P0

P1 P2

•

•

P0

P1
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Note that:

• the polygon formed by {P0, P1, P2}
approximates the curve. This polygon is
called the control polygon.

• P0 = C(0) and P2 = C(1)

• The tangent directions to the curve at its
endpoints are parallel to P1-P0 and P2-P1.

• the curve is contained in the triangle P0P1P2
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n = 3:

C(u) =

(1 - u)3P0 + 3u(1 - u)2P1 + 3u2(1 - u)P2 + u3P3

•

•

•

•

•
•

•

•

P0

P0

P1P2

P3

P1

P2

P3
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Note that:

• the control polygons approximate the shapes
of the curves

• P0 = C(0) and P3 = C(1)

• endpoint tangent directions are parallel to
P1 - P0 and P3 - P2
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• Convex Hull Property: the curves are
contained in the convex hulls of their defining
control polygons

• Variation Diminishing Property: no straight
line intersects a curve more times than it
intersects the curve’s control polygon (for 3D
replace the words straight line with plane)
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• Initially (at u=0) the curve is turning in the
same direction as P0P1P2. At u=1 it is turning
in the direction of P1P2P3

• A loop in the control point polygon may or
may not imply a loop in the curve. The
transition is a curve with a cusp.

• Bezier curves are invariant under affine
transformations (i.e., rotations, translations,
scale). Simply transform the control points



M E 5 2 5 x N U R B S  C u r v e  a n d  S u r f a c e  M o d e l i n g P a g e  3 8

Bezier Curves

Properties of Bezier basis functions, {Bi,n(u)}:

P1.1: Non-negativity: Bi,n(u) ≥ 0 for all i, n
and 0 ≤ u ≤ 1

P1.2: Partition of unity: ∑Bi,n(u) = 1 for all
0 ≤ u ≤ 1

P1.3: B0,n(0) = Bn,n(1) = 1
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P1.4: Bi,n(u) attains exactly one maximum on
the interval [0,1], i.e., at u = i/n

P1.5: Symmetry: For any n, the set
polynomials, Bi,n(u) is symmetric with respect
to u = 1/2

P1.6: Recursive definition:
Bi,n(u) = (1 - u)Bi,n-1(u) + uBi-1,n-1(u).
We define Bi,n(u) ≡ 0 if i < 0 or i > n.
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P1.7: Derivatives:

where,

B′i n, u( )
ud

d Bi n, u( )=

n Bi 1 n 1–,– u( ) Bi n 1–, u( )–( )=

B 1 n 1–,– u( ) Bn n 1–, u( ) 0≡ ≡
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Properties 1.6 and 1.7 provide the basis for
recursive algorithms to compute Bezier
blending functions and their derivatives.


