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ABSTRACT 

 
Military and industrial use of smaller, more accurate sensors are allowing increasing amounts of data to be acquired 
at diminishing costs during training. Traditional human subject testing often collects qualitative data from 
participants through self-reported questionnaires. This qualitative information is valuable but often incomplete to 
assess training outcomes. Quantitative information such as motion tracking data, communication frequency, and 
heart rate can offer the missing pieces in training outcome assessment. The successful fusion and analysis of 
qualitative and quantitative information sources is necessary for collaborative, mixed-reality, and augmented-reality 
training to reach its full potential. The challenge is determining a reliable framework combining these multiple types 
of data.  
 
Methods were developed to analyze data acquired during a formal user study assessing the use of augmented reality 
as a delivery mechanism for digital work instructions. A between-subjects experiment was conducted to analyze the 
use of a desktop computer, mobile tablet, or mobile tablet with augmented reality as a delivery method of these 
instructions. Study participants were asked to complete a multi-step technical assembly. Participants’ head position 
and orientation were tracked using an infrared tracking system. User interaction in the form of interface button 
presses was recorded and time stamped on each step of the assembly. A trained observer took notes on task 
performance during the study through a set of camera views that recorded the work area. Finally, participants each 
completed pre and post-surveys involving self-reported evaluation. 
 
The combination of quantitative and qualitative data revealed trends in the data such as the most difficult tasks 
across each device, which would have been impossible to determine from self-reporting alone. This paper describes 
the methods developed to fuse the qualitative data with quantified measurements recorded during the study. 
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INTRODUCTION 
 
As resources continue to diminish in today’s military, methods to effectively train the warfighter must be constantly 
evaluated for efficacy, retention, cost avoidance and other critical facets. The combined costs of conducting live 
training including the time necessary to complete the exercises, travel, reviews, evaluations, and other various 
activities can constitute a substantial expense. The ability to improve training by shortening training times represents 
an important key to the future success of training and simulation. Current methods for training evaluation such as 
pre and post training questionnaires, demographic data, and measures of performance, often do not provide trainers 
with all the necessary information or insight to improve a trainee's performance. In addition, current data points are 
difficult to integrate into a coherent profile of the trainee due in part to the variety of formats (e.g., paper and digital) 
with different fidelities (e.g., tracking data can be every second of training while post training questionnaires happen 
once). The goal is to fuse all of this data into a single coherent profile of the trainee to improve future training 
accuracy and retention. With this information, training can be completed more effectively using fewer resources. 
 
Sensors for collecting data continue to become smaller and less expensive every year and it is now possible to outfit 
trainees with relatively low-cost sensors including GPS devices, accelerometers, radios, heart-rate monitors, and 
electrodermal sensors. These sensors can be combined with other systems-based measures (Orvis, Duchon, & 
DeCostanza, 2013) like text messages, emails, phone calls, etc., to provide a trainer with an immense amount of 
training data. 
 
The combination of these low cost sensor and systems-based measures provide several benefits over traditional 
methods of data collection. For example, these methods are efficient due to their unobtrusive nature in recording the 
trainee with little effort from the observer. This dynamic eliminates many of the limitations of traditional data 
recording by a human observer who is subject to fatigue and distractions, resulting in missed observations. These 
quantitative systems-based collection methods are generally well received by the research community because they 
are perceived as "objective" measures of performance. The preference for quantitative measures stems from the 
dangers of rating errors such as "halo effect" which is a cognitive bias in which the overall impression of a person 
impacts the evaluation of that person’s skills (Murphy & Balzer, 1989). 
 
To avoid the use of qualitative evaluation entirely, however, would be to potentially lose out on valuable training 
insights. An expert can often record observations that are difficult if not impossible to capture with today’s 
technology. It is more a question of how to best leverage both qualitative and quantitative data than whether to use 
one or the other. This raises important questions about how the military might approach training evaluation. This 
paper addresses the question of how to leverage new forms of training data by describing an Augmented Reality 
(AR) training study performed at Iowa State University in cooperation with The Boeing Company. The study 
evaluated trainees learning to assemble a "wing" comparing traditional model-based work instructions (MBI) with 
augmented reality work instructions.  
 
Benefits using tracking sensors during training were realized from the data analysis and will be described. The 
tracking data provided redundancy for some measures as well as prompted new questions such as "How much time 
did each participant spend in each particular area of the work cell?" Answering these additional questions would 
have been impossible with traditional data collection techniques. The answers would have relied on what the 
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participants thought had happened (i.e. their perception of 
how long they spent in each area). The problem with this 
is that their perception and the actual timings were very 
different. 
 
 
BACKGROUND 
 
Augmented Reality 
Augmented Reality (AR) is the augmentation of the real 
world with digitally generated sensory inputs like visuals 
or sound. When applied to visuals, as was done for the 
current work, digital objects are registered spatially and 
rendered within the physical world often using a display 
device like a tablet or cell phone. Figure 1 shows an 
example of augmented reality as used in this work. In the 
figure, a blue digital object in the form of a 3D model is 
being rendered on screen in proper position as if it were in 
the physical world. In the early 1990s, Boeing had already 
begun looking into the use of augmented reality for manufacturing using a head-mounted display to superimpose 
design diagrams on real parts (Caudell et al., 1992). Numerous advancements in technology have further enhanced 
the feasibility of using AR. The use of AR for work instruction delivery has been an area showing possible benefit to 
industry (Nee et al., 2012). Research here has shown that reductions in both time and errors can be gained by using 
AR (Nakanishi et al., 2007). The study described in this paper was conducted to analyze augmented reality as a 
delivery method for work instructions in a manufacturing work space or cell. 
 
Fusing Qualitative and Quantitative Data  
Mixed methods research attempts to leverage the respective benefits of both qualitative and quantitative evaluation 
(Durham et al., 2011; Fielding, 2012; Hesse-Biber & Johnson, 2013). Kaplan and Duchon realized years ago the 
usefulness of leveraging both qualitative and quantitative evaluation techniques applied to systems evaluation 
(Kaplan & Duchon 1988). The authors were interested in the effects of new computer systems on such things as 
computer acceptance and the effect of technology on job characteristics and job satisfaction. Qualitative notes taken 
during the study were used to help resolve disagreements about the quantitative results. This led to a new direction 
for the study's quantitative analysis and subsequent results. An important fact this study brought to light was that one 
method might not always be enough to provide clear and accurate results of what actually occurred. Creswell 
suggests (Creswell, 2003) much research today lies on a continuum (Newman & Benz, 1998) between qualitative 
and quantitative methods, but often focuses more toward one method alone. A review of mobile HCI research 
methods in 2003 (Kjeldskov & Graham, 2003) showed the limited use of dual-method research and emphasized a 
need for more work.  
 
Often there are a number of factors in a study that are not specifically measured, but would provide additional 
situational insight. Schneiderman proposes that one solution for finding this extra information can be found through 
what was named Multi-dimensional In-depth Long-term Case studies (MILCs) (Schneiderman & Plaisant, 2006). 
While long-term studies can certainly add to understanding, sometimes it is not an option due to limited resources. 
Fortunately, there are often copious amounts of untapped data in a single training study that are not currently being 
measured. For example, in computational systems research, measures of task time and task success are traditionally 
recorded (Lazar et al., 2010). Actions like mouse clicks, corresponding positions and related time offer data that is 
not often used but can present valuable insight in post-study analysis. 
 
An area of growing use and a potential candidate for additional training data relates to wearable devices. Lukowicz 
et al. describe a large effort by the European Union to leverage wearables in the industrial workplace (Lukowicz et 
al, 2007). As these and other wearable computing devices become more widespread, and as measurement hardware 
becomes less expensive and more accurate, the important information lost by not leveraging these data will continue 
to grow. Orvis et al. discuss this developing issue and suggest a framework modeled after the biodata approach 

 
Figure 1: Augmented Reality blue part in assembly 

task. 
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(Mumford & Owens, 1987) by which to conduct research to better leverage untapped data they refer to as systems 
data (Orvis et al., 2013).  
 
In an era of tightening fiscal resources with a goal of reducing resource constraints, anywhere that technology can 
aid in training and practice remains critical. However, simply applying technology is not enough as demonstrated by 
previous research highlighted in this section. This technology and related data must be properly evaluated as to its 
effectiveness. What this brief literature search shows is that traditional human subject qualitative data may not be 
enough to adequately evaluate training effectiveness. Fusing this with quantitative systems data can provide a much 
more comprehensive evaluation. 
 
 
METHODOLOGY 
 
This study was designed to evaluate three different methods of presenting work instructions. The three methods 
were referred to as: 1) Desktop MBI; 2) Tablet MBI; and 3) Tablet AR. The first mode was designed to mimic 
current work instructions using Model-Based Instructions (MBI) on a stationary display located in one corner of a 
work cell and not visible from the work area. Figure 2a shows the Desktop MBI mode showing one step in the 
assembly work instructions. The Tablet MBI mode utilized the exact same Model-Based Instructions as the Desktop 
MBI, but showed them to the trainee on a tablet PC mounted on a mobile arm device (tablet can be seen in Figure 
2b). The third mode was the Tablet AR mode using the same tablet as used in the Tablet MBI mode, but presented 
the work instructions to the trainee using Augmented Reality. Figure 2b shows an image of a single step in the 
Tablet AR mode. 
 

 
 

Figure 2a: Desktop MBI Figure 2b: Tablet AR 
 
 
Study Hardware/Software Setup 
The setup of the study was designed to mimic a traditional work cell for manufacturing where there is a designated 
assembly area along with specific areas where workers can find large parts and another for smaller parts or hardware 
items such as nuts and bolts. Figure 3 shows the layout of the training area. All assembly tasks were performed in 
the Wing location. The Wing was positioned at approximately four feet high for ergonomic purposes. All of the 
larger parts for the assembly were located on the Parts Table shown near the upper edge of the image. All of the 
smaller parts like nuts and bolts were located in labeled plastic bins in the Parts Bins location. 
 
The Desktop MBI mode used a desktop computer facing toward the right in Figure 3. The study observer sat behind 
a desk in the area labeled "Observer" in the Figure 3. The observer recorded participant errors and times by hand on 
a paper chart throughout each study. All of the parts for the practice task were located on a separated table labeled 
"Practice Parts" in the figure. 
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The specific hardware selected for instructional 
delivery to each participant was dependent upon the 
mode each participant was assigned. The Desktop MBI 
mode used a commercially available Dell Precision 
Desktop computer paired with a twenty inch 3M LCD 
touch screen monitor. The touch screen monitor was 
used to mirror the touch screen behavior of the tablet 
interactions. 
 
The Tablet MBI and Tablet AR modes both used a 
12.1-inch Motion Computing tablet running an Intel 
Core i7 processor. The tablet was mounted on an 
Ergotron moveable arm designed for LCD monitors. 
The arm was then mounted on a small rolling base. 
This combination allowed participants to roll the tablet 
around the work cell and adjust the arm to achieve their 
ideal view. 
 
The Desktop MBI and Tablet MBI modes used a custom graphical user interface application built using the Qt 
interface library. Screen mirroring software was run in the background to allow the observer to see a live view of 
what the trainee was seeing. This screen recording was additionally saved as data for potential use later in the 
evaluation.  
 
The Tablet AR mode used a custom Augmented Reality application and user interface built by Boeing Research and 
Technology. The interface and AR elements were selected through collaboration with Iowa State University. The 
screen of the Tablet AR mode was observed and recorded throughout using the same screen-mirroring software 
noted for the Desktop MBI and Tablet MBI modes. 
 
A high precision tracking system was required to accurately align the AR models with the real world. A four camera 
infrared Vicon tracking system was used for this purpose. The four-camera system allowed tracking of the entire 
work cell. 
 
The entire study area was recorded on video using four webcams positioned around the work cell. All four webcam 
feeds were live streamed to the observers desktop computer which, when combined with the live screen capture 
from the tablet/desktop, provided the observer with different views of the work cell in the event that the view from 
the observation desk was blocked. This also provided the ability to review what each trainee did in later evaluation, 
in case of observer recording error. 
 
Study Procedure 
Each participant began with an Informed Consent Document and a pre-survey asking for demographic and 
experience data. After the initial background data was collected, the participant was introduced to his or her 
instructional mode. Each participant only experienced a single mode throughout his or her entire participation, a 
between-subjects experimental design. 
 
The introduction to the instruction delivery mode was accomplished with a five-step assembly task similar to the 
experimental task the participant would be asked to complete. This practice task used all aspects of the full task, 
including all data collection tools. The only differences being that participants were able to ask the observer 
questions if they had any and the participants were informed they were not being graded on performance. 
 
After successfully completing the practice assembly, the participant performed the full assembly task twice, with a 
Paper Folding test in between. The full task consisted of 46 different steps. The MBI instructions combined sets of 
these steps into a single page of instructions to better represent what is used on a typical factory floor. This resulted 
in 14 total steps for the MBI instructions. The steps ranged in complexity from selecting the correct parts, to 
properly aligning and fastening bolts through multiple parts. The most difficult task involved placing a part through 

 
Figure 3: Top down view of the training area 
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a complex rotation to achieve proper alignment. After completing the task a second time, participants were asked to 
fill out a short post-survey rating their performance on the tasks with several Lickert scale questions. 
 
On average the entire study took less than two hours to perform all tasks. Each assembly task was capped at 45 
minutes. This time was determined from pilot participants used to gauge the various aspects of the task. Only one 
participant reached the 45-minute time limit on a task. 
 
Data Collection 
The data collection methods were critical to this study given the two-hour length and large number of participants 
desired. Data redundancy permitted the study team to triangulate qualitative analysis results with that of the 
measured quantitative data. The tracking system and array of webcams played a large part in allowing this 
opportunity. While these were originally put into place to capture task accuracy and completion time, the resultant 
data was used for additional analysis including: 1) determining the amount of time spent looking at the instructions 
on the tablet and 2) the amount of time traveling between different work areas. 
 
The study observer used traditional pen and paper data collection throughout each study. This was comprised of a 
pre and post-survey, a paper folding test, and all observational notes taken during the task. Task activities were 
recorded on a piece of paper gridded by five-second intervals with categories of participant activity to be indicated 
for each time block: reading instructions, gathering parts from bins, gathering parts from the parts table, assembling 
at the work, or fixing a mistake. This method allowed notes to be taken about a particular point in time for later 
comparison with the video recording if necessary. Notes were additionally made regarding assembly errors and 
instances when participants went back and fixed such an error before the end of the task. 
 
The instructional interfaces also recorded data during the assembly task and every button click to move to the next 
step or back to the previous step was time stamped and recorded. This time stamp capture allowed post processing 
of the data to determine how much time was spent on individual steps. This also made it possible to determine how 
many times individual participants went backwards to check a previous step (each of which would have been 
difficult for an observer to make reliable notes on during the task in combination with the numerous other 
responsibilities). 
 
Each participant was asked to wear a plastic helmet with reflective tracker balls that would allow an optical tracking 
system to accurately obtain his or her head position and orientation continually during the assembly tasks. The same 
reflective tracker balls were applied to the tablet case to allow its tracking (Figure 2). This system allowed the 
tracking of the position and orientation of both the tablet and the participant's head. A custom application was 
written to query the tracking system every 0.5 seconds for the raw tracking data to record. 
 
After a participant completed the study, 
the recorded raw tracking data was fed 
into a custom post-processing 
application that converted the raw data 
into a usable form. It was very important 
to make the collection and processing 
steps independent so that the post-
processing application could be updated 
to look for new trends in the data as the 
results were being processed. The 
selected method to handle the raw 
tracking data was to create a visual 
representation that was easily 
understandable. Figure 4 shows the post-
processing software application 
displaying the results of a Tablet AR 
mode session. Each blue dot represents 
the participant at one time point and the 
black dots represent the tablet at a single 
time point. The black outlined boxes 

 

Figure 4: Post-processing of tracking data for Tablet AR mode. 
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represent areas of interest within the work cell. In this case the areas of interest are the Parts Bins, the Parts Table, 
the Wing, and the Desktop MBI location. 
 
Tracking data is time-based, allowing the participants’ movements to be played back in a real-time animation, fast-
forwarded or rewound. Converting the raw tracking data into these visual representations helped reveal trends in the 
data, such as how the movements around the work cell change based on the mode. Visualizing the data raised new 
questions about how participants moved around the space, such as how many trips a participant made between the 
Parts Bins and the Wing. The post-processing app was able to help answer those questions by looking at the tracking 
data and the areas of interest. The processing of the tracking data allowed discrete values to be placed on these types 
of questions for use in statistical analysis with other traditional forms of data collection. 
 
RESULTS 
 
The study was performed with a total of 48 participants distributed among the three different modes with 15 
Desktop MBI, 15 Tablet MBI, and 16 Tablet AR. Two participants' data were removed. One was due to failure of 
the data collection software and the other was an outlier in several measured metrics indicating that the participant 
did not understand the instructions. Among the remaining 46 participants, the age range for participants varied from 
18 to 44 years of age. 80% of the participants were between 18 and 20 years of age, 18% were between 23 and 30 
years of age, and 2% were between 30 and 44 years of age. All participants were students with 78% of them 
majoring in engineering. There was an uneven gender split with 78% of the participants being male to 22% female. 
The results of the study showed no significant differences in errors or time based on any of the demographic data.  
When comparing the traditional model based instructions with augmented reality instructions, there were three areas 
of interest: 1) First time quality (lowest errors); 2) Fastest time; and 3) Worker efficiency. Each of these areas show 
how the approach of fusing system data with human subject data can further enrich training outcomes and measures. 
 
First Time Quality 
First time quality is the ability for a novice trainee with little or no experience to perform an operation the first time 
with no errors. This could be anything from assembling an unfamiliar firearm to correctly implementing a list of 
safety procedures the first day on the job. First time quality was evaluated based on the number of errors made 
during the assembly task. These were measured in a traditional method with the observer making detailed notes on 
errors using a paper evaluation form. The types of errors observer were divided into four categories: Incorrect Part; 
Incorrect Location; Incorrect Orientation; Extra Part. 
The breakdown of errors by instruction 
delivery mode is shown in Figure 5. The 
median of each mode was used instead of 
average errors to eliminate the influence of 
outliers. The blue bar represents the first 
assembly attempt and the green bar 
represents the second attempt. Both tablet 
modes performed significantly better than the 
Desktop MBI mode, with Tablet MBI p < 
.038 and Tablet AR p < .0001. When looking 
at errors by participant, the Tablet AR mode 
had more participants with zero errors. This 
indicates AR has the potential to improve 
first time quality on assembly tasks. 
 
When looking at the number of errors by 
task, Tablet AR had significantly lower 
errors on Steps 2, 3, and 11. Step 2 and 3 
involved placing washers in a specific 
location. Step 11 involved the selection of 
one correct harness amongst similar incorrect 
harnesses. The significantly lower errors on these steps indicate AR may offer better information for exact 
placement and part selection tasks. 

 

Figure 5: Errors by mode 
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Fastest Time 
The amount of time required completing a 
task as well as the learning curve are 
important measures of successful training. 
The total time was measured using a standard 
stopwatch and confirmed with the time 
stamped button clicks recorded. The time 
spent on each mode is shown in Figure 6 as 
minutes. The results indicate that most AR 
participants completed the assembly task 
faster the first time than with other modes. 
The variances are not equal in each mode 
(per Levene's Test), so the Welch ANOVA 
was used to show that Tablet AR trial 1 times 
(Blue bars on graph) are significantly lower 
than Desktop MBI (p = .01). 
 
With the implementation of time stamped 
button clicks in each interface, it was 
possible to track the participant's advances 
and time through each step and the overall 
task as shown in Figure 7. Utilizing the 
computer to track tasks at sub-second accuracy provided higher fidelity data with fewer chances of errors. The 
human observer was marking events at a five second resolution. Even at this lower time resolution, the human 
observers often commented on the number of tasks they were attempting to perform simultaneously and the 
difficulty in performing all the tasks without error. The automated button click collection had the added benefit of 
providing researchers with confidence in the task time data and the resulting conclusions. 
 
Step 5 (yellow box) shows a 
longer time taken than the 
other two modes, although 
not significantly. The extra 
time taken on this task was 
likely to be due to the lack 
of occlusion in the AR 
interface, as observers noted 
that participants had 
difficulty with vertical part 
ordering on this step. 
Occlusion provides a sense 
of depth by hiding parts of 
the virtual object that would 
be hidden by the real world 
object. Step 6 was another 
interesting time difference 
with Tablet AR's time being 
significantly lower than 
Desktop MBI (p < .003). Step 6 is represented by the red colored box in Figure 7.  
 
Worker Efficiency 
The efficiency of a worker was looked at using the position and orientation of the both the tablet and the 
participant's head. This information allowed for the calculation of both the number of looks at the tablet during the 
task and the amount of time spent looking at the tablet. The human observer was not able to reliably log what the 
participant was looking at and for how long during the study. Instead the AR tracking system was leveraged to 
gather this information. The tracking system tracked the position and orientation of the helmet worn by participants  

 
Figure 6: Time by mode 

 

Figure 7: Time by Task 

☐Each box shows separate step 
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and the tablet holder.  A criterion was developed for indicating a look at the tablet which required a ray emitted from 
the helmet’s position and orientation to strike the tablet’s plane within one meter of the tablet’s center. One meter 
was allowed to handle small disparity with how the participant’s wore the helmet. 
 
The average number of looks at the tablet is shown in Figure 8. Both the first and second trials using the Tablet AR 
mode recorded significantly fewer average number of tablet looks (p = .004). The fewer number of looks meant that 
participants were not "bouncing" back and forth between the instructions and the physical task. They were able to 
focus on the actual assembly steps, 
as they understood the instructions 
more quickly. 
 
The average time per look was also 
calculated with the Tablet AR 
having a lower average time per 
look. The longer looks could 
indicate more focus on the task or 
more confusion interpreting the 
instructions. When combining the 
results of the average look time with 
the number of looks and the total 
task times, it would appear the 
longer look times would indicate 
more focus on the task. 
 
Net Promoter Score 
Among the self-reported data 
gathered was the Likert survey 
question, "I would recommend 
work instructions like this to a 
friend." Responses to this question on a 1-5 agree-disagree scale can be converted to a net promoter score 
(Reichheld, 2003) by subtracting the percentage of detractors (answers of 1, 2, or 3) from the percentage of 
promoters (answers of 5); answers of 4 are ignored. Net promoter scores range from -100% (worst) to 100% (best).  
According to Reichheld, the median net promoter score for over 400 companies in 28 industries was 16%.  Net 
promoter scores for the three instruction modes were: Desktop, -20%; Tablet MBI, -47%, and Tablet AR, 44%.  The 
difference between Tablet MBI and Tablet AR is dramatic, and is confirmed by statistical analysis of the data. A 
pairwise analysis using Dunn's (1964) procedure with a Bonferroni correction revealed statistically significant 
differences in recommend responses between Tablet AR and Tablet MBI (p = .015). One might suggest that the data 
is high for Tablet AR simply because of novelty. However, these responses were found to be significantly negatively 
correlated with the total number of errors in Trial 1, r(45) = -.325, p < .031 (one extreme outlier in errors was 
removed), which makes sense: participants who made fewer errors were more likely to recommend the system. 
After participants gave their recommendation rating, they were asked, "Why?" Their answers were critical for 
understanding the detractors. Detractors' answers fell into two primary categories: 1) complaints about the 
organization of the workflow (e.g., "Several steps could have been combined into one," or "I don't like the order [of 
steps]") and 2) complaints about the format and content of the instructions themselves (e.g., "Part names are way too 
confusing," or "It wasn't clear which direction to screw the bolts on"). This provided some of the most compelling 
evidence that sensor and self-reported data needed to both be present. From the net promoter scores, one could 
easily infer that Tablet MBI performed very poorly. In fact, for many of the tasks Tablet MBI scored significantly 
better than Desktop and often compared closely to Tablet AR, as has been shown previously. While it is important to 
consider the effect on each participant, it is equally important to consider how they performed using each mode.  
 
 
DISCUSSION 
 
In this study, three work instruction delivery methods were analyzed. Results covered in the previous section 
suggest that the use of augmented reality as a work instruction delivery method can increase first time quality while   

 

Figure 8: Average number of tablet looks 
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reducing time on task. Data also indicates that using AR also led to more focus on each task by the participants. It 
was found that those using Desktop MBI and Tablet MBI spent a large amount of time traveling and confirming 
information by looking at the screen. Finally, it was found that specific tasks might benefit more strongly from the 
use of AR. 
 
Traditional study methods including pre and post-surveys, video recording, a paper folding test, and qualitative, 
observational note taking were carried out for each participant of each instruction delivery mode under investigation. 
In addition to standard methods, non-traditional approaches including the use of head tracking and interface 
interaction were also recorded and used. Information such as the overall time, number of errors, and time for each 
task were possible to track using traditional methods of stopwatch and pen and paper. However, observers noted that 
it was difficult to keep up with recordings because of the large number of items they were asked to record, and that 
small errors may have been made due to this fact. Fortunately, by leveraging non-traditional quantitative 
measurements, namely the tracking system and interaction recordings, further analysis triangulated the data and 
confirmed situations causing potential discrepancy.  
 
Using the tracking system also allowed the post-study analysis of trainee motion throughout the study. In some cases 
visualizing the participants’ paths highlighted unique insights that otherwise would not have been captured. For 
example, it was very easy to pick out from the visualization that certain users would seldom move the mobile tablet. 
It is possible for the observer to note these facts, but with the observer pre-occupied, maintaining levels of accuracy 
and insight became increasingly difficult. 
 
Another feature brought out by the post-processing tracking visualization was the commonality of participants 
making a back and forth motion between the Wing and tablet or desktop to confirm what they read or had viewed. 
Although not initially measured for by study design, this extra data provided a unique insight into why certain times 
were being observed and trends were coming out in the data. 
 
A final and critical dynamic realized from data recorded in this manner was the ability to play back a participants' 
activities. This could be looked at by visualizing their paths or by viewing the full video. Because each participant 
was tracked throughout, data analysis can continue and further insights can be gleaned even though the study is over 
and participants are gone. New questions can still be asked and insights drawn from the data. One example of 
possible future work for this study would be an added feature to the visualization tool matching up timestamps of the 
participant interface interaction with the tracking data. This would allow analysis to be performed regarding how the 
participant was interacting with the device while in certain areas of the room. All of this can be done without 
requiring more trainees, more time, and subsequently more money and resources. This is not possible without the 
non-traditional study data collection. 
 
Challenges and Recommendations 
The described approach yielded many positives but difficulties arose while attempting to use more and more non-
traditional data. For example, the extra work involved with recording this data. Two custom applications were built 
in order to use the tracking data (one for recording and saving the data and one for visualization). These can now be 
used for future work, but took valuable time to build as well as maintain. 
 
In addition to the difficulty of acquisition, date storage represented a challenge. This study required the storage of 
five video feeds, tracking data, recorded device clicks, and observer notes, from separate computers. Aggregating all 
this data using manual sources (i.e. flash media, external hard drives) was a time consuming tasks. For a long-term 
study or large number of trials, it is worth considering networking the individual devices and automating the 
collection and storage processes. Finally, effectively using growing amounts of data is still a large problem both in 
military and industry today. The data are becoming easier to acquire, but using and understanding the data still 
remains difficult. 
 
 
CONCLUDING REMARKS 
 
In this work, traditional data collection methods for training analysis may have led to one or possibly multiple of the 
same conclusions. However, traditional methods would not have allowed for detection of tablet look time or 
accurate zone residence times, for example, which were used to gain greater insights into the traditional data 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2014 

2014 Paper No. 14158 Page 12 of 12   

collected. By tracking participants and by recording interface interaction throughout each training session 
conducted, a major asset was added to the investigation.  
 
As data continues to become easier to acquire through wearables, mobile devices, and other technologies, not 
leveraging their unique capabilities and ease of use represents a vast pool of unrealized data. In conclusion, it does 
not seem to be a question of whether to use these devices, but a question of how much, and to what extent. 
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