Geol 588

GIS for Geoscientists II

(Mar. 10, 201I)

- Distances (simple and cost-based)
- Best-path exercise
- data\HW5 - Cost distance exercise

- Direction grid (still regarding these 3 points!)
- Each cell encodes:"the direction I need to move towards the closest point"
- Same scheme as aspect map (azimuth)

Dealing with distances

- Tools: Spatial Analyst Tools - Distance
- Two types of distance measured in ArcGIS:
- Euclidean (Straight line) distance
- Cost distance
- (Related:Allocation and direction info rasters)
- Euclidean (straight line distance) only based on points (here: stars) or line segments (i.e. many points)
- each cell: contains: a euclidian (real space) distance (float) to the closest point (where ever that point is!)
- it's NOT known, which (ID) of the 3 points is that closest point
- traversal cost would be I for each cell
- Allocation raster:Which point is the closest? (space partition)
- Thought experiment (for later):
- imagine the distance as elevation raster (point have 0 elevation)
- Which path would a drop of water at the circled location take?
- (related to direction info)

Allocation (partition) information

Real cost to

 traverse a cell- Traversal cost raster encodes a abstract "cost" that influences the creation of a path
- Rule: to traverse this cell, you need to pay X
- Here X can be I - 10 (IO: most expensive)
- land use ($\mathrm{I}-\mathrm{IO}$):
- roads (city) cost I (green)
- fields cost 6 (yellow)

black lines: roads layer - ignore
triangles: schools triangles: schools (points)
- water cost IO (red)

Cost distance raster: How much to pay from here to get to the closest school? Unit of cost is same as traversal cost raster (here: abstract, based on I-IO scheme)
Shows the accumulated cost, NOT simply a "concentric" increase!

also create the Cost backlink (distance) raster

Cost path tool

- "destination"
data": my location
- Destination field: gives the Value for path raster? (not sure...)
- Needs: Cost distance raster, cost backlink direction raster
- both rasters contain indirect information about source points (schools)
- result: shortest (cheapest) line to go from start to any source point(s)

My location ("destination")

Cost Back Link Raster

- Encodes directions
- "On current cell, which direction do I need to go to get the shortest way back to the source?"
- 8 possible directions
- (0 means: - you're back on the source

- needed later for shortest path operation
- here: grey pixel is the only source (not roads!)
- Repeat until source is hit

- raster of optimal (shortest, cheapest) path (rest: Nodata cells)
- PATHCOST: total cost along this path
- convert path raster to line feature (didn't work for me :(

Traversal cost as "elevation"

Path as drop of water running down from
destination to source

HW 5 - shortest path based on slope cost

- I) create euclidian distance around schools
(the rest will deal with cost distances only)
- 2) reclass the slope raster into to $\mathrm{I}-\mathrm{I} 0$, equal intervals and use it as traversal cost raster
- 3) Create cost distance and cost backlink rasters
- 4) create cost path my location to nearest school
- 5) compare to landuse cost based path

