Geol 588

GIS for Geoscientists II

(Feb I5.201I)

Surface analysis tools and Neighborhood (focal) tools

Digital Elevation Model (DEM)

- Digital Terrain Model (DTM)
- topography: Elevation (ft. or meter, sometimes: elevation in feet, horizontal distances in meters!)
- US Geological Survey:
- 7.5' maps (quads), $10 \mathrm{~m}, 30 \mathrm{~m} ; 90 \mathrm{~m}$
- National Elevation Dataset (NED): 10 m
- Shuttle Radar Topography Mission (SRTM): 90 m
- raster values: large integers (1243 ft) or float (543.2 m)

Hillshade (typically as semi transparent
overlay)

Contour (lines)

Curvature (change of slope i.e.
change of change
change of change of elevation)

Slope \& Azimuth

- Based on elevation difference of cell to elevation of surrounding cells
- Gradient at cell (center)
- Problem: if X / Y are in meters, elevation (Z) is in feet
- Solution: multiply elevation by 3.280 (Z-factor)
- Tool: Spatial Analyst tools Surface - Slope

Hillshading

- Trick to fool our eyes to see 3D relief
- Simulate Sun from direction (0-360) and angle (0-90)
- Creates a grey scale raster ($0-255$, black -> white)
- Gotcha: Sun must be in the North (270-90), otherwise relief looks inverted (human evolution: sun from above)
- 10-50\% transparent, drape over DEM
- play with contrast and brightness settings
- Tool: Spatial Analyst tools - Surface - Hillshade
- geol588\data\Hillshade Tools - ArcGIS 9.3 special hillshade methods (not sure if they still work in ArcGIS 10 ...)

Aspect

- direction of maximum rate of change at cell's center
- looking down to the maximum slope (geology: dip direction)
- in degrees (0-360) from North, circular data type
- flat areas (0 slope): encoded as -I
- on floating point DEM, a very small slope (<0.01) should be filtered to 0
- Default colors (can be changed:
- visually reduced into the 8 major directions
- flat areas a shown grey
- Tool: Spatial Analyst tools Surface - Aspect

Viewshed

- needs a shapefile with points or lines
- Which cells can be seen from these points?

- Shoots rays from point to each cell, check for intersect with terrain
- Tool: Spatial Analyst tools - Surface -Viewshed
- Observer points tool:
- which points can see other points? (limit 16 points)
- can include height of point ("towers"), limit azimuth, ...
- creates a table only

Neighborhood function tools

- go through ALL cells (locations) c input raster one by one
- for each cell, do some sort of math involving it's "neighbors"
- e.g.: calculate the SUM of all cells "around" it - write that one value into output raster - go to next cell
- different neighborhood shapes (Geometries)
- use a kernel (3×3) to filter raster (mean => low-pass filter)
- Spatial Analyst Tools -

Neighborhood

Related Tool:
 3D analyst

Toolbar -
Create Line of Sight

Focal Statistics tool

Neighborhood "geometry":
green current cell, yellow: (red) neighbor cells

- Statistics type for Focal Statistics tool:

- MEAN - Calculates the mean (average value) of the cells in the neighborhood.
- MAJORITY - Calculates the majority (value that occurs most often) of the cells in the neighborhood. (INT only)
- MAXIMUM - Calculates the maximum (largest value) of the cells in the neighborhood.
- MEDIAN - Calculates the median of the cells in the neighborhood.
- MINIMUM - Calculates the minimum (smallest value) of the cells in the neighborhood.
- MINORITY - Calculates the minority (value that occurs least often) of the cells in the neighborhood. (INT only)
- RANGE - Calculates the range (difference between largest and smallest value) of the cells in the neighborhood.
- STD - Calculates the standard deviation of the cells in the neighborhood.
- SUM - Calculates the sum (total of all values) of the cells in the neighborhood.
- VARIETY - Calculates the variety (the number of unique values) of the cells in the neighborhood. (INT only)

