Geol 588

GIS for Geoscientists II

Lecture 5 - Interpolation

Today

- Ex. 3 solution
- 2D spatial interpolation (theory)
- Pause
- Effects toolbar
- Interpolation in ArcGIS (examples)
- Away March 3 I and April 2
- On Thursday - Intro to ArcScene?

Ex. 3 - Many Peaks

- Where to build a lodge?
- has a view of as many peaks as possible
- viewshed analysis uses canopy (elevation + trees)
- also: need flat ground (< 5 deg. slope)
- possible cell values in initial viewshed: 0 to I0 (\# of peaks)

- reclass to

$$
0-8=>0,9-|0=>|
$$

- show cells with I with good contrast
- use Identify tool to get slope, azimuth, coordinates
- Create final map (with hillshade and 50 ft contours)

Green for low elevations?

contours in black?

- Optional: Find out which (9) peaks are in sight from lodge

(i) Identify		
Identify from: \quad Observe_calcl		
\square Observe_calc 1 19823	Location: $609,448.35$	
	Field	Value
	Stretched value	255
	Pixel value	19823
	Rowid	868
	COUNT	4
	OBS1	1
	OBS2	1
	OBS3	1
	ama.	,

- Identify tool - what's value of observer grid at lodge location?
- Look up value in observer grid's attribute table
- Get all OBSxx with I (summit can see lodge and vice versa)

粗 Attributes of summits＿selection＿shp				\square	回 $x^{\text {a }}$
	FID	Shape＊	NAME	FIPS	A
	0	Point	Anchor Hill	1	
	1	Point	Crook Mountain	1	
	2	Point	Custer Hill	1	
	3	Point	Deadman Mountain	1	
	4	Point	Dome Mountain	0	
	5	Point	Granite Peak	1	
	6	Point	Kirk Hill	1	三
	7	Point	Lexington Hill	0	
	8	Point	Oyster Mountain	1	
	9	Point	Pillar Peak	0	
	10	Point	Red Hill	1	
	11	Point	Sly Hill	1	
	12	Point	White Rocks	0	
－	13	Point	Whitewood Peak	0	
	14	Point	Proposed Location	0	－

Crook Mountain

Whitevood Peak

White Rocks
Lexington Hill Pillar Peak
Dome Mountain
Proposed Location
Anchor Hill

Custer Hill
－Figure out which OBSxx is which peak name
－Select and show on map（or use special symbol）

Spatial Interpolation

- point samples (x, y, "value")
- fill each cell (center) in raster with an "appropriate" value
- Principle: the closer together points are, the more similar their value (should be)
- (depends on many factors: type of underlying phenomenon, etc.)
- Examples?
- in general: distance and sample value matter

Thiessen (Voronoi) polygons

- Interpolation? Space division scheme?
- Assign each sample "its fair share" of space around it
- Raster: fill this space (polygon) with same value
- Problem?

(Thiessen polygons: not in spatial analyst but keep in mind for later)

Moving

"Averaging"

- Simple form: grab all the point samples within the sample radius
- Cell value is Sum of these points' values divided by their number (mean)
- problem?
- (interpolated value at sample location?)

Related topic: point density

- NOT a value interpolation scheme!
- How dense are the samples together?
- simply count all the point samples within the "circle", divide by circle's area
- "kernel" method: different math, smoother

Housing Density

... the Point Density technique passes a "roving window" over a project area calculating the total number of houses within a specified distance

Inverse Distance Weighted (IDW) interpolation

$\mathrm{Z} i$ is value of known point
Dij is distance to known point
Z j is the cell value (unknown)
n is a user selected exponent
or power (often $\mathrm{I}, 2$ or 3)

$$
z_{j}=\frac{\sum_{i} \frac{z_{i}}{d^{n} i j}}{\sum_{i} \frac{1}{d^{n} i j}}
$$

- grab all the point samples inside a radius
- When calculation the cell's value, take the sample distances into account ("weight")
- Weight of each sample point is an inverse proportion to its distance to the cell
- The further away the point, the less the weight it gets (contributes less)
- effect of exponent $(1,2,3, .$.$) ?$

- Higher exponents: less weight to distant points (point that are farther away)
- (closer point are more important)
- Use more samples: "smoother" distribution
- interpolated value at sample location?
"linear": exponent = 1 "squared": exponent = 2

IDW:

 search radius

- variable search radius:
grab n (I2) closest points, up to a distance of d (default 0 , => no distance limit)
- fixed search radius:
grab ALL points within a distance of
(250) units, use at least n points (default 0 , => use all)

IDW: using break lines

- line features to limit (block) point "grabbing"
- samples "from the other side" of the break line will NOT be used
- use for: ridges, faults, ...
- Caveats: much slower, some NoData values
(extrapolation issues?)

Splines

- smooth surface, non-exact
- based on minimizing curvature
- rubber sheet "bent" around samples
- can over-shoot / under-shoot
- ArgGIS: 2 types - regularized and tension
- ArcGIS:Weight - smoothness "tweak" factor
- gotcha: both have different meaning of weight
- tension (0.I - I5):
low = smooth, high = coarse)

Interpolation class exercise

- new ArcMap, add elev_pts_samples_IOO from geol588ldatal
- I00 random points, elevation extracted from dem_steep with Extract by Points tool
- IDW fixed: fixed search radius 5000 m
- IDW variable: variable search radius (I2 pts)
- Tension spline, weight 0.1
- Tension spline, weight I0
- Color all with Temperature (spectral) color ramp (smooth)
- Activate Effects tool - compare results
- compare to "true" data (dem_steep)

