GEOL 452/552 - GIS for Geoscientists I

Lecture 23 - LiDAR

- LiDAR - some background (thanks to Chris Kahle, DNR)
- Converting Lidar point data to a raster
- Visualization/Analysis (small subset, pre-made full tiles)
- Look at online lidar data for lowa (Im hillshaded)
- Work with Lidar elevation raster around Ames
- Data in \follow along\lidar_class_ex (ames_lidar_data_ex.mxd)
- Customize - Extensions - Activate Spatial Analyst and 3D Analyst

Lidar representations:

3D point cloud
TIN (points connected to triangles)
Raster (interpolated from 3D points)

USGS 2005 CSC-2 contract with Sanborn

- Productized LiDAR: FEMA, Standard, High-res
- FEMA and Standard Product Specs: $* 1.4 \mathrm{~m}$ posting
 $* 18.5 \mathrm{~cm}$ Vertical RMS @ 95\% confidence ($\boldsymbol{\pi} .28$ inches) .37 cm vertical RMS in Vegetation (214.57 inches) *1 m horizontałRMS @ 95\% confidence (39.37 inches)

-Vegetation removed: FEMA product 95%; (90% - Standard product $)$
*Artifacts removed: FEMA 90\%; (89% - Standard) *Outliers removed: FEMA 95\%; (90% - Standard) *Buildings removed: FEMA Product 98\%; (95% - Standard)

Last Returs

Records the lowest elevation (no canopy but roofs)

First Return

Special! Records the intensity (or loss) of the reflected laser energy:
forrest $=$ low returns (high loss) $=>$ black cement $=$ lots of energy returned $=>$ white

Find and measure sinkholes under vegetation cover

Mormon Trail remnants - Union County, Iowa

Let's look at 10 m resolution vs Im resolution

- Load ames_lidar_data_ex.mxd
- I've added lowa DEM hillshaded online data
- look at 30 m (100 ft), $10 \mathrm{~m}(30 \mathrm{ft})$ then Lidar ($1 \mathrm{~m}, 3 \mathrm{ft}$)

Lidar - how to get from Points to raster

- lowa: Need to download raw data in $2 \mathrm{~km} \times 2 \mathrm{~km}$ "tiles"
- Download tiles as .las format (binary) or .xyzi (text)
- Each tile: ~2-3 million points (!), size: 100 Mb (compressed), Shape file: 300 Mb
- Raw resolution: $\sim 1 \mathrm{~m}(x / y)$ but needs processing into rasters
- www.geotree.uni.edu/lidar/ (google geotree lidar)
- need to install 7zip (freeware zip) to uncompress .7 z files
- Processed (IGS?):
- 3 m resolution DEM (cm Z resolution in integers) and Im resolution hillshade from lowa Geological Survey

Convert a $2 \times 2 \mathrm{~km}$ tile of raw Lidar Data points (.las file) into a DEM (raster)

- Download .las file (I tile)
- Convert .las file into (Multi) point shape file
- each multi-point contains ~3400 "real point"
- ArcTools: 3D Analyst Conversion - From File LAS to Multipoint
- (Remember to activate 3D analyst extension, even for ArcTools)

13

Your turn:

- load Ames_lidar_data.mxd
- let's assume you've already created a point shapefile from .las file
- Use:

Skunk_river_bare_earth (blue points)

- This is Bare Earth data
- Subset of 132 k points instead of full 2-3 mio.
- zoom in, measure point distance between some points
- But: what's the elevation?

- Make hillshade (Spatial A. Surface Analysis) of bare earth DEM (25 degr.Azimuth)
- Layer Properties - Display
- Switch on World Imagery layer
- make hillshade 30% transparent (contrast 20\%)
- set to bilinear Interpolation (Resample)
- So ... what happened here?

- Let's make a DEM raster from points
- (1 m bare-earth DEM)
- Use inverse-distance-weighting (IDW) interpolation
- (Spatial Analyst - Interpolate to raster)
- power $=2$, Variable search radius
- BUT, number of points $=1$
- elevation from closest point
- output cell size: I m

Symbolize DEM as: stretched, with elevation color, Minimum-Maximum

- make a profile on bare earth DEM, figure out the grade of the railroad
- make another "DEM" and hillshade but now from first returns (FR) point layer (Skunk_river_first_returns)
- this will show the tree canopy, top of buildings
- How would you visualize the differences in elevation from bare earth to first returns?
(same colormaps, Effects toolbar)

New：I m Lidar hillshade raster per county

－Ilpub．gis．iastate．edulpub
－lowaDNR－Counties
－Copy DEM＿3M＿I＿XX
－$X X<-$ county number
－rasters in jp2（Jpeg2） format，per county
－Digital Elevation model made from radar：
－at a 3 m lateral resolution（not Im）
－cells have elevation values in cm not meters

Location：率 DEM＿3M＿I＿01．img
$\boxminus \square$ \pub．gis．iastate．edu\pub \pm ERDAS
ESRI
（T）icss
\square IowaDN
（ \because Basin
B Basins
$\boxminus \boxminus$ Countie
$\square \exists$ Adair
\＃$\square_{\text {SOIL＿01 }}$
㡭 2010＿NAIP＿airphotos＿01
㡭 andreas＿atlas 01
圆 census＿1990＿01
census＿2000＿blocks＿01 comon＿land＿unit＿01 4 common＿ 2 ft 01
$\stackrel{\square}{\square}$ contours＿2ft＿
（1 兹 DEM＿3M＿I＿01
国 doqq＿catalog＿01
臸 DOT＿roadmap＿01
圖 GLO＿vegetation＿01 4 NWI＿01＿line國 NWI＿01＿poly圆 PLSS＿01
n rivers 0

Wrap－up

－No more lectures，please find and work on a class project

17－Nov	Ch 8 －Raster Analysis	IIdar ex．／suitability anal）
22－Nov	Thanksgiving Break	Thanskgiving break
24－Nov		Thanskgiving break
29－Nov	Work on Class Project （Geol 552）	Work on class project
1－Dec		Work on class project
6－Dec	Review for Final	Work on class project
8 －Dec	Project Presentations	
TBA	Final exam	

－Week after Thank giving break：I＇ll be here TT 9－II for help with projects！
－All meet again here for Final exam Prep／Review session on Dec． 6 （Tues．Dead week）
－Material：textbook chapters I－8，II，I2
－Need review questions！Use Bb－Discussions
－Dec． 98 All meet here for project presentations（IO slides， 10 min．， powerpoint）
－Final：Multiple Choice test（20 min．）＋practical test（ 60 min ）（？？？Tues．Dec I3， noon－3 ？？？）
－Poster version of class project（ $300 \mathrm{dpi}, 90 \%$（or less）jpg，should end up <10 Mb ），
due Dec． 17

