GEOL 452/552-GIS for Geoscientists I

Lecture 2 I - Chapter 8 (Raster Analysis, part2)

- Talk about class project
- (copy follow_along_data|CH8a_class_ex into U:\ArcGIS if needed)
- Catch up with lecture 20 (distance functions)
- Digital Elevation Models (DEMs), Topographic functions (surface analysis): slope, aspect hillshade, viewshed, contours, profiles
- (block statistics functions, needed for ch 8 ex. 3)
- Talk about USGS Seamless raster data server
- lab today: Ch 8Tut I8-35
- Preferable: something about your own research
- Fallback (easy to get started): Do a suitability analysis with low or US data
- Nov. I7: give me I paragraph project description: goal, methods, data
- work on project Nov. 17 - Dec. 8
- Dec. $8,10 \mathrm{~min} / 10$ slide powerpoint presentation
- Digital Poster (36" $\times 27$ ") as 96 dpi jpg, due Friday Dec. 15 (last day of finals week)
- Everybody needs to attend presentations Dec. 8, 9-1I (vote for best presentation)

Final project:

- Geol 552: mandatory, Geol 452: extra credit
- (needed to count as part of GIS certificate)
- Emphasis on combined analysis: (spatial) queries, (spatial) join, geoprocessing; and effective result presentation
- Mostly (only) vector data is OK (raster as "background")
- Suggestion: Expand on Miniproj 2 theme
- Don't get too hung up on finding "right" data
- OK to use DNR lowa data (environmental, people, transport, commercial locations, water) on p-drive

Class exercise

- Activate Spatial Analyst and 3D analyst extensions
- Keep using dem.img in ch8a_class_ex as DEM
- set Environment extent to extent of dem_float.img
- set Environment Workspace to your U:\ArcGISIch8a_class_ex folder
- Always create .img rasters in your ch8a_class_ folder!
- Now: => lecture 20, last 4 slides (Distance functions)
- (who needs handouts from last class?) Add-l/ Manage
VBA Macros

Customize | Customize MoI |
| :--- |
| Style Manager. | Style Manager.

ArcMap Optior

\square Data Interoperabilit

- Data interoperability
- Geostatistical Analy

Network Analy
\square Publisher
\square Schematics
Schematics

Eeprocogsing Customize Winda \begin{tabular}{|c}
$\substack{\text { Buffer } \\
\text { Clip }}$

\hline

Clip

Intersect

\hline

 $<$

Union

Merge

\hline
\end{tabular} Dissolve -a Search For Tools

1. ArcToolbox
2. AccToolbox
© Results
g_{0}
Modelevilder

- - Modelbuilder $^{\text {Sog }}$
(2) Python

Geeprocessing Resour
Geoprocessing Options

Digital Elevation Model (DEM)

- also: Digital Terrain Model (DTM)

- topography: Elevation (ft. or meter, sometimes: elevation in feet, but horizontal distances in meters!)
- ($10 \mathrm{~m}=\mathrm{I} / 9 \mathrm{arc}$ second, $30 \mathrm{~m}=\mathrm{I} / 3 \mathrm{arc}$ sec., $90 \mathrm{~m}=\mathrm{I}$ arc sec.)
- Data (US Geological Survey)
- National Elevation Dataset (NED): $10 \mathrm{~m}, 30 \mathrm{~m}, 90 \mathrm{~m}$
- Shuttle Radar Topography Mission (SRTM): 90 m
- LiDAR data (for lowa in progress): <1 m horizontal, $\sim 20 \mathrm{~cm}$ vertical
- Elevation (Z-direction) in feet or meters? (important for slope, hillshade, viewshed)

Convert feet-based DEM to meter

- dem.img: (floats) x / y are already in meters but cell's VALUE are in feet (2000 to ~ 2500)
- \quad | meter $=3.2808399$ feet I foot $=0.3048$ meters
- how can we use the Raster calulator tool to create a meterelevation DEM from dem.img
- save as dem_elev_in_meters.img
- use Symbology - Import to color dem_elev_meters with same color as dem.img (ft)

math is:

Seamless.usgs.gov

- Web based raster download (lots of good data, interface can be clunky!)
- Display = preview in Browser (not all types of data are available everywhere!)
- Request download area: interactive rectangle or extent (lat/long)
- Download data or medify Data request (wait for refresh)

- Based on elevation difference of cell to elevation of surrounding cells (next slide
- Gradient at cell (center)

- Perfectly flat: Slope = 0
- Gotcha: X / Y in meters, but elevation (Z) can be in feet
- Solution: multiply elevation by 3.280 (Z-factor)
- Spatial Analyst -> Surface Analysis or ArcToolbox - Spatial Analyst tools (not TIN slope!)

Aspect

- cell center's direction, when
 looking down towards the maximum slope
- (think: which compass heading would water run?)
- in degrees ($0-360$) from North, circular data type
- flat areas (no slope): encoded as -I
- typical: show as 8 directions (colors)
- Looks like "3D" slopes (similar to hill shading)
- Spatial Analyst - Surface Analysis, ArctoolBox Spatial Analysis Tools(!)- Aspect

Viewshed

- needs DEM + shapefile with points
- Which cells can be seen from these points? (red = no, green = yes)

- Shoots rays from point to each cell, check for intersect with terrain
- Can also use lines (visible from road, river, etc.?)
- Observer points tool: which points can see other points?
- Spatial Analyst - Surface Analysis, ArctoolBox - Spatial Analysis Tools(!)

Hillshading

- Trick to fool our eyes to see terrain as 3D relief
- (Think: how do artists draw a 3D sphere with a pencil?)
- Simulate Sun from direction ($0-360$) and angle ($0-90$), creates grey scale map
- best color ramp: black = no sunlight, white = max. sunlight,
- Gotcha: Sun must be in the North (270-90), otherwise relief looks inverted (human evolution - sun from above?)
- "Smoothing" of grayscale raster: Display - Resample ... Bilinear or Cubic (Also: Contrast 10\%-30\%)
- Similar to Slope (also a "gradient"), good in combination with other layers
- Make 10% - 50% transparent, drape over other layer (DEM, slope, etc.) and/or contour lines
- Spatial Analyst - Surface Analysis, ArctoolBox - Spatial Analysis Tools(!)
- VALUE attribute: number of viewpoints visible (number of "hits" from rays)
- "NotVisible": means no hits, "Visible": mean one or more hits
- VALUE: total number of hits, but you don't know which viewpoints hit a certain cell!
- Also works for line ("can you see point \#2 from the bridge?")

Contours

- Lines of equal Elevation
- traditionally: shown on a "topomap" (USGS)
- Make sure to use the elevation data set!
- Let's create 100 m contours (starting at $0, \mathrm{a}$ line every 100 m)

- Save as line features as contours_100m.shp

Labels:

- use CONTOUR attribute
- placement properties: Parallel, On line, Halo (?)
- for gaps around labels see WebCT - GIS material -

Creating_Advanced_cartographic_effects.pdf

2300

Hill profiles

- Activate 3D Analyst extension and tool
- Set 3D Analyst layer to dem_float.img
- Click on "Interpolate Line tool
- Click first profile point
- $2 x$ click to finish line (2. profile point)
- Click Profile Tool
- Works on selected graphics or line features
- If Profile tool is greyed-out: select graphic (via Black arrow) or line feature first

