

Lecture Plan

- Ch. II, one lecture
- Coordinate systems Projection, Datums, Dpheroid
- Unprojected (geographic) coord. syst., UTM
- On the fly projection vs. data file projection
- HW 7: only I exercise, we'll do in in class
- Introduce Mini project 2 (HW8) due next Thursday

Different types of Projections

- All points on a sphere are measured in angles of Latitude (N-S), Longitude (E-W) (DD = decimal degrees)
- How to best draw a points/lines/polygons on paper?
- A) Unprojected ("GCS") - no conversion of Lat/Long , draw features on a canvas "grid"
- Problem: Distortion of shapes increases when going further North (Size/shape of Greenland?)
- B) use a Projection:
- Translate Latitude/longitude angles (degrees) to distances (meters)
- Aim: less distortion (locally) for angles, distances
- Distance computation (ArcGIS) work better with projected coordinates (meters instead of degr.)

- Projection: mathematical transformation (conversion, "formula") to convert x/y
- from a spherical (geographic) coordinate system (GCS) to ("round)
- to a cartesion coordinate system ("flat")
- Three ingredients for coordinate transformation:
- Type of Spheroid
- Type of Datum
- Type of Projection

Type of Spheroid used

- Spheroid $=$ sphere (3D) with different axis length
- Geoid, more complex, true shape of the earth
- But:We can locally approximate a geoid with a spheroid
- Common spheroids:
- Clark 1866 Spheroid
- GRS 1980 Spheroid

Different Datums improve local fit

Spheroid (red) based on North American Datum 1927 fits the Geoid well in the US

Geoid:True, complex

Type of Datum

- Datum: 3D center of the simple approximation (sphereoid) of the Earth
- Difference from the true center of the Earth (Geoid)
- In North America: North American Datum (NAD)
- NAD27 implies ClarkI866 spheroid
- NAD83 implies GRS 1980 spheroid
- Geographic coord. systems (GCS) also have a Datum (e.g. WGS 84, used in Google Earth)

UTM system

- Very common type of projected coordinate system
- Let's explain the acronym, but backwards (M-T-U)
- Mercator means cylindrical projection
- Named after Gerhard Kremer, a Flemish cartographer who lived from 1512 to 1594.
- Gerhardus Mercator was the latinized form of his name.
- used this projection for a map in 1569

- Universal
- meaning: works (nearly)
 everywhere (except poles)
- location as x / y
- meter based offset from artificial origin
- 6 or 7 digits for coordinates

- Transverse:

Means cylinder is rotated to the side

- make one N-S slice per UTM zone

- I UTM zone $=6$ degree wide slice (yellow)

Coordinate systems in ArcGIS

- Each Data frame uses a projection (R-click-Data frame - Properties Coordinate system
- This supersedes a layer's coordinate system!
- Important parts:
- Projection type
- Linear Units (meters, ft)
- Datum (ignore the GCS)
- Not shown: Spheroid (inferred from Datum)

Data Frame Properties

| Feature Cache | Annotation Groups | Extent Indicato |
| :---: | :---: | :---: | General Data Frame Coordinate System Current coordinate system:

 1

General 1 Data Frame
USA Contiguous: Equidistant_Conic
Projection:Euvidistant Conic
False Easting: 0.000000

- For layers: R-Click Properties - Data Source
- When ArcMap draws

Data Source Unproj	ected
Data Type:	Shapefile Feature Class
Shapefile:	U:\ArcGIS $/$ mgisdata World \|utmzone.shp
Geometry Type:	Polygon
Geographic Coordinate System:	GCS_WGS_1984
Datum:	D_WGS_1984
Prime Meridian:	Greenwich
Angular Unit:	Degree

- This on-the-fly projection does not alter the file internally

Lab partl:HW 7-due next tuesday but finish ASAP

 to move on the miniproj2!- Open ex_II.mxd (mgisdata/Map Documents)
- Open a Word file, make sceenshots as we go along
- For Data frame and States Layer:What's the coordinate system, projection, datum and map units? 3 pts
- For the States layer only, show lower 48 states, make a screenshot
- Measure width (East-West, in meters) of the UTM Zone 14 in North Dakota, compare that to width of the zone inTexas (3 pts)
- Now Set Data frame to Unprojected GCS - North America - NAD 83)
- Make another screenshot of lower 48 (in GCS - NAD83)
- Again compare the width of UTM zone I4 (N. Dakota vs.Texas) but this time in degrees (3 pts)
- Which UTM zones cover lowa and where do they start and end (East-West direction only, in degrees)? (3 pts)

ArcGIS tools: projecting a GIS data File manually

Lab part 2:

HW 8 - Miniproject 2 (lowa data) - due next Thursday

- Think of chains of operations from operations: attribute or spatial query, DB Join, spatial join, summarize, statistics
- Pose a (somewhat sensical) GIS question, and solve it. Document your solution!
- Focus on questions involving Distance, counting, average/smallest/largest, sum (total)
- Ex: How many people in XYZ county live within 10 miles of a river and within 5 miles of a confined feeding operation (CAFO)
- For counties where old people outnumber young people, what is the average/ total number of towns with less than 500 people
- What is the average ($\mathrm{min} / \mathrm{max}$) distance of schools to fast food places?
- Create at least 2 chains of operations, each chain is worth 5 to 10 pts , depending on complexity
- For now, let's only snoop around for data and do some brainstorming!
- in U:\ArcGIS make a miniproj2 folder (to collect potentially relevant data) and open a Word doc to jot down ideas for chains
- Part of lowa Data: data\Miniproj 2 data, full version \lpublpub\lowaDNR\IA_state
- Possible themes:
- Tourists/Travellers
- Geology \& environmental issues
- Transportation
- Water
- Population (census)
- Marketing study (who/where to sell a product)
- May add a base layers from ESRI (File - Add Data - Add Basemap)
- Basemaps should be semi-transparent
- Make sure you present data effectively, use colors, symbol sizes, labels, etc
- Optional: make a nice map, save as pdf (up to 5 pts per map)

