GEOL 452/552

GIS for Geoscientists I

Lecture 15 - chapter 11

Why use Projections? How to draw locations from a round sphere ... Latitude/Longitude 20.44395, 45.23432 20.44732, 45.28453 ...

Lecture Plan

- Ch. II, one lecture
 - Coordinate systems Projection, Datums, Dpheroid
 - Unprojected (geographic) coord. syst., UTM
 - On the fly projection vs. data file projection
- HW 7: only 1 exercise, we'll do in in class
- Introduce Mini project 2 (HW8) due next Thursday

Different types of Projections

- All points on a sphere are measured in angles of Latitude (N-S), Longitude (E-W) (DD = decimal degrees)
- How to best draw a points/lines/polygons on paper?
 - A) Unprojected ("GCS") no conversion of Lat/Long, draw features on a canvas "grid"
 - Problem: Distortion of shapes increases when going further North (Size/shape of Greenland?)
 - B) use a Projection:
 - Translate Latitude/longitude angles (degrees) to distances (meters)
 - Aim: less distortion (locally) for angles, distances
 - Distance computation (ArcGIS) work better with projected coordinates (meters instead of degr.)

Lat = 43.567 DD Long = -93.698 DD

Projected coordinate system (UTM)

Angle grid: distorted "round rectangles"

- Projection: mathematical transformation (conversion, "formula") to convert x/y
 - **from** a spherical (geographic) coordinate system (GCS) to ("round)
 - **to** a cartesion coordinate system ("flat")
- Three ingredients for coordinate transformation:
 - Type of Spheroid
 - Type of **Datum**
 - Type of **Projection**

Type of Spheroid used

- Spheroid = sphere (3D) with different axis length
- Geoid, more complex, true shape of the earth
- But: We can locally approximate a geoid with a spheroid
- Common spheroids:

(mountains, valleys, etc.)

- Clark 1866 Spheroid
- GRS 1980 Spheroid

9

Type of Datum

- Datum: 3D **center** of the simple approximation (sphereoid) of the Earth
- Difference from the true center of the Earth (Geoid)
- In North America: **N**orth **A**merican **D**atum (NAD)
 - NAD27 implies Clark 1866 spheroid
 - NAD83 implies GRS 1980 spheroid
- Geographic coord. systems (GCS) also have a Datum (e.g. WGS 84, used in Google Earth)

. .

Different Datums improve local fit

Spheroid (red) based on North
American Datum1927 fits the
Geoid well in the US

Blue Spheroid (Pulkova
1942) fits the Geoid
well in Europe

Geoid:True, complex
shape of the Earth

UTM system

- Very common type of projected coordinate system
- Let's explain the acronym, but backwards (M-T-U)
- Mercator means cylindrical projection
 - Named after Gerhard Kremer, a Flemish cartographer who lived from 1512 to 1594.
 - Gerhardus Mercator was the latinized form of his name.
 - used this projection for a map in 1569

location as x/y meter based offset from artificial origin

Universal

(nearly)

6 or 7 digits for coordinates

Each Data frame uses a projection (R-click-Data frame - Properties -Coordinate system

This supersedes a layer's coordinate system!

Important parts:

Projection type

Linear Units (meters, ft)

Datum (ignore the GCS)

• Not shown: Spheroid (inferred from Datum)

- For layers: R-Click -Properties - Data Source
- When ArcMap draws a layer, its coordinate system will be (onthe-fly) converted to the CS of the data frame!
- This on-the-fly projection does not alter the file internally

Lab part I: HW 7 - due next tuesday but finish ASAP to move on the miniproj2!

- Open ex_I I.mxd (mgisdata/Map Documents)
- Open a Word file, make sceenshots as we go along
- For Data frame and States Layer: What's the coordinate system, projection, datum and map units? 3 pts
- For the States layer only, show lower 48 states, make a screenshot
- Measure width (East-West, in meters) of the UTM Zone 14 in North Dakota, compare that to width of the zone inTexas (3 pts)
- Now Set Data frame to Unprojected GCS North America NAD 83)
- Make another screenshot of lower 48 (in GCS NAD83)
- Again compare the width of UTM zone 14 (N. Dakota vs. Texas) but this time in degrees (3 pts)
- Which UTM zones cover lowa and where do they start and end (East-West direction only, in degrees)? (3 pts)

19

ArcGIS tools: projecting a GIS data File manually Datafile Projection info (see Properties) Coordinate System: GCS, WGS, 1984 Datum: D, WGS, 198

Lab part 2:

HW 8 - Miniproject 2 (Iowa data) - due next Thursday

- Think of chains of operations from operations: attribute or spatial query, DB Join, spatial join, summarize, statistics
- Pose a (somewhat sensical) GIS question, and solve it. Document your solution!
- Focus on questions involving Distance, counting, average/smallest/largest, sum (total)
- Ex: How many people in XYZ county live within 10 miles of a river and within 5 miles of a confined feeding operation (CAFO)
 - For counties where old people outnumber young people, what is the average/ total number of towns with less than 500 people
 - What is the average (min/max) distance of schools to fast food places?
- Create at least 2 chains of operations, each chain is worth 5 to 10 pts, depending on complexity
- For now, let's only snoop around for data and do some brainstorming!
- in U:\ArcGIS make a miniproj2 folder (to collect potentially relevant data) and open a Word doc to jot down ideas for chains
- Part of Iowa Data: data\Miniproj 2 data, full version \\pub\\pub\lowaDNR\IA state

- Possible themes:
 - Tourists/Travellers
 - Geology & environmental issues
 - Transportation
 - Water
 - Population (census)
 - Marketing study (who/where to sell a product)
- May add a base layers from ESRI (File Add Data Add Basemap)
- Basemaps should be semi-transparent
- Make sure you present data effectively, use colors, symbol sizes, labels, etc
- Optional: make a nice map, save as pdf (up to 5 pts per map)

