GEOL 452/552

_

GIS for Geoscientists I

Lecture 4 (Chapter I and 2)

- What does mapping GIS data mean?
- show location, outline of features and
- express **attribute value(s)** graphically (symbols, colors, etc.)
- "visualization" of GIS data on a map
- in the next lectures we'll go over different ways of mapping GIS data and explore ArcMap a bit
- but: you still need to go over ch. 2 tutorial!
- open mgisdata5\Map Documents\ex_3a.mxd (the one in your U:\ArcGIS folder!) in ArcMap now

Today

- Ch 2: Mapping GIS data (lectures 4, 5 and 6)
 - different types of data (also: next lecture)
 - how to show each data type in ArcMap
 - Start using ArcMap
- Ch I leftover : Map scales

2

ArcMap overview:

Map scale concepts

- What does a map scale of 1:1000 mean?
 - I length unit (inch) on the **map** is
 - 1000 length units in **reality** (also inches!)
 - May need to convert: inches to miles (or km!)
- What's a "large scale" map? Is 1:1000 "larger" than 1:5000? (what does zoom in mean?)
 - compare the **ratio** (I divided by xxxx) not the scale number
 - 1:1000 (0.001) is of "larger scale" then 1:5000 (0.0002)
 - Tip: in ArcMap, you can just punch in 20000 (for 1:20,000) as Map scale

• How to get physical size of a feature (lake) that is 2.5 cm wide when viewed on a 1:100,000 map?

• A) paper map: solve equation

• B) ArcMap: Use Measurement tool

metric units l m = 1000 cm l km = 1000 m

Calculating a paper map's scale by hand:

- The Length of a 100 yard football field measures 0.5 inches on a map - what is the map's scale?
- Real world length of 100 yards in inches is 100 yards * 36 in/yd = 3600 inches (see last page of text book for unit conversions)
- Set up the ratio what is x in:
- 1/x = 0.5/3600
- \bullet x / I = 3600 / 0.5

x = 7200

The map's scale is 1:7200

0.5 inches on map 0.5" 3600" X 100 yards in reality

37.000.000

16,000,000

"I inch on map = 7,200 inches in reality"

ArcMap: Measure tool

Select units:

What's the distance between the cities with green stars?

Hint: Abort from live "measuring tape" with Escape key

Layer properties - this is where you define how to

Nominal Data

- Describes names of feature
- Nominal data = names (words, computer-speak: "strings")
 - name of state, land owner, etc.
 - "Name": codes or indices (e.g. FIPS for counties, soil-codes, zipcodes)

Labels

- Single symbol maps: same symbol / appearance
- Labels: very simple way to show a feature's attribute value as text

Categorical Data

- Places features into distinct categories based on an attribute/ field (here: Road types)
- Different values (names, types) within each category ("Freeway")
- Examples: Landuse, types of crop or animals, geologic units
- ArcGIS: Symbolize as Unique values (limited number of types of objects)

11

Making a unique values (Categories) map

- Value field will show you all attribute fields
- It's up to you to select an attribute that contains categorical data (NOT numbers)
- Assigns a symbol (here: type of line) to each value

13

Mapping numerical data

- Interval and ratio data: need to make classes before mapping (need find **class** boundary, more next lecture)
- Show as variations in symbol size, thickness, or color (lightness, hue) or combinations

class boundaries: 14, 18, 23 and 30

Numerical Data

Deals with numbers (Zip code? No!)

- Type A: **Ord**inal = rank (or **order**) (1., 2., 3., etc.)
 - Examples: Rankings of: state by population, universities, grades, taste
- Type B: Decimal numbers (5.1, 2.3) or integers (5, 1, 8)
 - Examples: Length, Temperature, \$, population, rainfall
 - Interval vs ratio type: ratio needs a meaningful "0
 point "(Celsius system vs. Fahrenheit or pH)

14

Types of maps symbolized as Quantities

Graduated Colors/Symbols

- example: your features contain pollution values from 1 t 9
- How to **classify** numeric data into a few groups:
 - sort: 1,9,3,4,6,7,3,6,2,7,8 > 1,2,3,4,5,6,7,8,9
 - group: I 3, 4 6, 7 9 > group I, group 2, group 3
- Graduated color: each group get a color from a color ramp (green -> yellow -> red)
- Graduated **symbol**: increase a property (e.g. symbol size) of the symbol from small to large

17

- on the fly, divides the attribute by <another attribute>
- Reason: fair comparison
 - <PERCENT OF TOTAL>
 - · creates % from absolute numbers
 - By another field
 - Farm density: divided by area (by SQMI)
- You will need to use normalization in HW 2

next lecture: finish symbolization

Normalizing

Graduated color maps

18

Lab

- ch 2 tutorial: try to get to step 36 before next lecture
- complete ch 2 tutorial up to step 40
- HW 2 will be: ch 2, ex. 2-7 extra: 8
 - It's already on Blackboard but you have until
 Sept. 12 to hand it in (next 2 labs)
 - read HW2 instructions on Blackboard first! D
 - Don't only look at the book, I changed/added a couple of things!