GEOL 452/552

GIS for Geoscientists I

Lecture 4 (Chapter I and 2)

- What does mapping GIS data mean?
- show location, outline of features and
- express attribute value(s) graphically (symbols, colors, etc.)
- "visualization" of GIS data on a map
- in the next lectures we'll go over different ways of mapping GIS data and explore ArcMap a bit
- but: you still need to go over ch. 2 tutorial !
- open mgisdata5\Map Documentslex_3a.mxd (the one in your U:\ArcGIS folder!) in ArcMap now

Today

- Ch 2: Mapping GIS data (lectures 4, 5 and 6)
- different types of data (also: next lecture)
- how to show each data type in ArcMap
- Start using ArcMap
- Ch I leftover: Map scales

ArcMap overview:

Map scale concepts

- What does a map scale of I:I000 mean ?
- I length unit (inch) on the map is
- 1000 length units in reality (also inches!)

- May need to convert: inches to miles (or km!)
- What's a "large scale" map? Is I:I000 "larger" than I:5000? (what does zoom in mean?)
- compare the ratio (I divided by $x x x x$) not the scale number
- I:I000 (0.00I) is of "larger scale" then I:5000 (0.0002)
- Tip: in ArcMap, you can just punch in 20000 (for $1: 20,000$) as Map scale

Calculating a paper map's scale by hand:

- The Length of a $\mathbf{I 0 0}$ yard football field measures 0.5 inches on a map - what is the map's scale?
- Real world length of 100 yards in inches is 100 yards * 36 in/yd $=3600$ inches (see last page of text book for unit conversions)
- Set up the ratio - what is x in:
- $\mathrm{I} / \mathrm{x}=0.5 / 3600$
- $x / I=3600 / 0.5$ $x=7200$
- The map's scale is 1:7200

"I inch on map $=7,200$ inches in reality"
- How to get physical size of a feature (lake) that is 2.5 cm wide when viewed on a $\mathrm{I}: 100,000 \mathrm{map}$?
- A) paper map:
- B) ArcMap: ment tool
solve equation Use Measure-

metric units $1 \mathrm{~m}=1000 \mathrm{~cm} \quad 1 \mathrm{~km}=1000 \mathrm{~m}$

ArcMap: Measure tool

What's the distance between the cities with green stars?
 then click a feature.

Hint: Abort from live "measuring tape" with Escape key

Mapping GIS data

You have this data type
Layer Properties calls this ...

Single symbol map
$(+$ labels $)$
Unique values map
Graduated color (polygons)

Graduated symbc (points, lines)

Dot Density
Chart maps

Labels

Nominal Data

- Describes names of feature
- Nominal data $=$ names (words, computer-speak:"strings")

- name of state, land owner, etc.
- "Name": codes or indices (e.g. FIPS for counties, soil-codes, zipcodes)
- Single symbol maps: same symbol / appearance
- Labels: very simple way to show a feature's attribute value as text

Layer properties - this is where you define how to map an attribute

```
Right-click
on layer }x\mathrm{ Remove
```



```
    Capitals
    \<
```



```
Layer Properties
```


Categorical Data

- Places features into distinct categories based on an attribute/ field (here: Road types)
- Different values (names, types) within each category ("Freeway")
- Examples: Landuse, types of crop or animals, geologic units

Making a unique values (Categories) map

- Value field will show you all attribute fields
- It's up to you to select an attribute that contains categorical data (NOT numbers)
- Assigns a symbol (here: type of line) to each value

Mapping numerical data

- Interval and ratio data: need to make classes before mapping (need find class boundary, more next lecture)
- Show as variations in symbol size, thickness, or color (lightness, hue) or combinations

class boundaries: 14, 18,23 and 30

Numerical Data

Deals with numbers (Zip code? No!)

- Type A: Ordinal = rank (or order) (I., 2., 3., etc.)
- Examples: Rankings of: state by population, universities, grades, taste
- Type B: Decimal numbers (5.I, 2.3) or integers (5, I, 8)
- Examples: Length, Temperature, \$, population, rainfall
- Interval vs ratio type: ratio needs a meaningful " 0 point "(Celsius system vs. Fahrenheit or pH)

Types of maps symbolized as Quantities

Graduated Colors/Symbols

- example: your features contain pollution values from It 9
- How to classify numeric data into a few groups:
- sort: I,9,3,4,6,7,3,6,2,7,8 > I,2,3,4,5,6,7,8,9
- group: I - 3, 4-6, 7 - $9>$ group I, group 2, group 3
- Graduated color: each group get a color from a color ramp (green -> yellow -> red)
- Graduated symbol: increase a property (e.g. symbol size) of the symbol from small to large

Graduated color maps

- on the fly, divides the attribute by <another attribute>
- Reason: fair comparison
- <PERCENT OFTOTAL>
- creates \% from absolute numbers
- By another field
- Farm density: divided by area (by SQMI)
- You will need to use normalization in HW 2 next lecture: finish symbolization

Normalizing

Lab

- ch 2 tutorial: try to get to step 36 before next lecture
- complete ch 2 tutorial up to step 40
- HW 2 will be: ch 2 , ex. 2-7 extra: 8
- It's already on Blackboard but you have until Sept. 12 to hand it in (next 2 labs)
- read HW2 instructions on Blackboard first! D
- Don't only look at the book, I changed/added a couple of things!

